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ABSTRACT 

As the expansion of digital communication applications still continues, the need for automated 

classification of digital modulation types increases. This study attempts to give a partial solution 

to this problem by proposing a classification scheme which identifies nine of the most popular 

digital modulation types; namely 2-FSK, 4-FSK, 8-FSK, 2-PSK, 4-PSK, 8-PSK, 16-QAM, 64- 

QAM and 256-QAM. Higher-order statistics parameters are selected as class features, and a 

hierarchical neural network-based classifier set-up proposed for the identification of all 

modulation types considered except those within the M-QAM family. Specific M-QAM types 

identification is obtained via equalization-based schemes. This study considers the effects due to 

real-world multipath propagation channels and additive white Gaussian noise. Results show a 

consistent overall classification performance of at least 68% for severe multipath propagation 

models and for SNR levels as low as 1 ldB. 
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EXECUTIVE SUMMARY 

Classifying signal types is of high interest in numerous different application 

areas, as classification problems arise in commercial and military areas such as 

imaging, communication, control, target recognition, etc.... This thesis 

specifically focuses on the classification of various commonly used digital 

modulation types, namely 2-PSK, 4-PSK, 8-PSK, 2-FSK, 4-FSK, 8-FSK, 16- 

QAM, 64-QAM and 256-QAM. 

Numerous research results have already been presented in this area, however 

most of them deal with either a small number of symbol states, relatively clean 

channel characteristics, or require large amounts of data. A significant aspect of 

this thesis was the design of a robust classification scheme that is able to work 

even under unfavorable propagation conditions such as realistic multipath and 

fading, and noise distortions. A hierarchical classification approach was 

selected as it allows for a relatively simple overall scheme with only few 

parameters needed to differentiate between modulation types. Back 

propagation neural network units were adopted because they offer the 

flexibility needed to cope with propagation environments that constantly 

change, as is the case in real-world communications. 

The selection of higher-order statistics parameters as class features for the 

neural network classification units proved to be effective and robust for all 

classification schemes, except for specific M-QAM modulation types. 

Simulations showed that M-QAM types may be so affected by multipath and 

fading that higher-order statistic parameters become of very limited use for 

their specific identification. Equalization algorithms proved to be the only 

solution to separate M-QAM signals with satisfying results in medium to high 

SNR levels. The equalization step combines the generic blind equalization 

CMA-FSE algorithm and the constellation-specific Alphabet Matched 

equalization algorithm, and differentiates between high-order QAM modulation 

types in medium to high SNR environments. 

xix 



The overall classifier was intensively tested in various propagation situations 

and signal-to-noise ratio (SNR) levels. Simulations show classification 

performances may be strongly affected by the amount of multipath distortion 

and noise in the transmission channels. Results show overall classification 

performances of 99% at 20dB down to 90% at 8dB for rural area propagation 

environments, while in more highly distorted channels such as urban 

propagation environments, overall classification performances are 82% at 20dB 

down to 68% at 11 dB. 

Results also showed that the greatest difficulty of this study was in the 

separation of M-QAM modulation types, which proved to be much more 

sensitive to channel degradations than the other modulation types considered. 
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I. INTRODUCTION 

A.       THESIS OBJECTIVES 

Digital telecommunications have been introduced in our everyday lives, from 

cellular telephony to satellite communications and from fast wireless Internet access to 

remote missile guidance systems. But as this evolution continues, unexpected problems, 

such as congested bandwidth, have come up. Classifying signal types is of high interest in 

numerous different application areas. Classification problems arise in commercial and 

military areas such as imaging, communication, control, target recognition, etc.... This 

thesis specifically focuses on the classification of digital modulation types M-PSK, M- 

FSK, M-QAM. A significant body of work exists in this area, however most of it deals 

with either a small number of symbol states M, relatively clean channel characteristics, or 

requires large amounts of data. This work first investigates the selection of robust and 

well-defined class features, and next designs a classification procedure which can be 

applied under some extreme conditions such as low SNR levels, realistic fading and real- 

world multi-path propagation channels. 

B.        THESIS ORGANIZATION 

Following an overview of the most recent research results available in the open 

literature in the area of digital modulation classification, Chapter II introduces the basic 



concept behind a digital communication system. Next, we briefly review the commonly 

used modulation schemes considered in this study, namely M-FSK, M-PSK and M- 

QAM. Chapter III discusses propagation issues and explains how they may affect 

transmitted signal quality. In Chapter IV, the concept of signal equalization is defined, 

and two iterative methods used in this study are analytically described and tested. Chapter 

V introduces the concept of higher-order statistics and specifically focuses on higher- 

order statistical moments and cumulants as they are selected as identification features in 

the classification set-up. We investigate the robustness of these features with respect to 

propagation problems. Chapter VI describes the basic principles of neural networks, as 

they form the core of the proposed classification scheme. In Chapter VII the proposed 

classifier is analytically described and evaluated with extensive simulations. Chapter VIII 

summarizes the results and presents recommendations for further extensions. 

C.   BACKGROUND 

The recognition of digital modulation types has been investigated extensively 

over the last twenty years. Numerous different approaches using the time and/or the 

frequency domain have been proposed, and those can be subdivided in two main general 

families; decision-theoretical or statistical pattern recognition approaches. This section 

briefly reviews some of the most recent work done in these two areas. 

Soliman and Hsue proposed to use statistical moments as class features to classify 

CW and M-PSK signals [SAH92]. Their approach achieves classification performances 



close to 100% for SNR levels greater than lOdB. However, no simulation on real world 

propagation models has been reported. 

Azzouz and Nandi proposed a hierarchical tree-based approach to classify 

constant amplitude signals such as CW, M-PSK and M-FSK [ANA95]. The selected 

features are statistical characteristics such as the power density or the standard deviation 

of the normalized centered instantaneous amplitude of the signal, etc.... Results showed 

this simple scheme to have 90% correct classification rates for signals in additive white 

Gaussian noise at SNR levels equal to lOdB or higher. However, once again, no 

simulation results for signals transmitted using real-world "types" of propagation 

channels situations have been reported with their approach. 

Polydoros, Long and Chugg present a maximum likelihood approach to the 

problem [PLC96]. Their method classifies OQPSK, BPSK and QPSK modulation types 

contaminated with additive Gaussian white noise, using decision rules based on a 

maximum likelihood criteria. Results show a 99% correct classification rate for SNR 

levels equal to 5dB or higher. However, their scheme requires some a-priori signal 

information, such as the initial phase and symbol rate, making the whole process less 

practical. 

Ketterer, Jondral and Costa propose a time-frequency approach to the problem 

[KJC99]. This scheme is a two-step process. First, autoregressive modeling is used to 

estimate the carrier frequency. Next, the time-frequency information, provided by the 

Cross-Margenau-Hill distribution [HPC95], is applied to estimate phase shifts, frequency 

shifts and amplitude shifts allowing the separation of M-PSK, M-FSK and M-QAM 



signals respectively. Simulations show modulation classification performance over 97% 

for SNR levels larger than lOdB. Unfortunately no simulations under real world 

propagation channels were made to further test the robustness of the method. 

Huo and Donoho propose a different method to classify 4-QAM and 6-PSK 

[HAD98]. They use a classifier designed to minimize the Hellinger distance [BER77] 

between the empirical distribution of the intercepted signal and the true signal density 

function. The proposed scheme leads to recognition performances equal to 100% for 

SNR levels equal to 15 dB or higher. However, such performance requires the knowledge 

of the channel model, and recognition performances drop significantly when dealing with 

unknown channels. 

Hong and Ho apply wavelet transforms to classify M-PSK, M-FSK and M-QAM 

signals [HAH99]. Their simulation focuses on 16-QAM, Q-PSK and Q-FSK and gives 

correct classification percentage of over 98% for SNR levels equal to 5dB and higher. 

However, no simulations under fading multi-path propagation conditions are available, 

once again. 

Mobasseri considers a pattern recognition approach and uses the constellation 

shape information obtained from the received signal to estimate the digital modulation 

type by applying fuzzy c-means cluster analysis [MOB00]. This scheme works well to 

separate low order constellations such as QPSK, 8-PSK and 16-QAM and provides 

correct recognition of over 90% for signal-to-noise ratios larger than 5dB. .However, no 

results are provided for signals transmitted over real-world propagation channels that 

might rotate and severely distort the signal's constellation. 



Marchand, Martret and Lacoume use cumulants and moments to build a matched 

filter classification system that has an exceptional performance, close to 100% of 

accurate recognition for SNR levels equal to OdB or higher [MML97]. This classifier is 

tested to identify 4-PSK versus 16-QAM but may easily be modified to incorporate more 

modulation schemes. However, again no simulation on fading multipath channels is 

conducted. This work is extended later by Marchand who selects moments and 

cumulants for classifying purposes in his Dissertation work [MAR98]. He proposes a 

computational inexpensive scheme to classify M-PSK and M-QAM signal types, and 

investigates the robustness of the scheme with respect to varying level of additive noise 

and number of symbols. 

Ananthram Swami and Brian M. Sadler [SAS00] also select cumulants for class 

features. They introduce a hierarchical tree classifier scheme that uses second and fourth 

order cumulants to classify M-PSK, PAM, and M-QAM signals and achieves a 100% 

correct recognition for SNR levels higher than 8dB, where the number of states M is 4, 8, 

16, and 32. Their encouraging conclusion is that the method may easily be expanded to a 

higher level of constellations such as 64-QAM, by increasing the order of the cumulants 

selected for class features. 

Finally, Barbarossa, Swami, Sadler and Spadafora recently proposed the Alphabet 

Matched Algorithm (AMA), which is an iterative gradient descent scheme where the cost 

function to be minimized is based on a pre-determined signal constellation structure M- 

PSK and M-QAM signals [BAR00]. Their results show that the AMA is able to classify 

higher order constellations (such as 64-QAM) propagated through a linear channel in 



SNR levels of 30dB perfectly. This method is further analyzed and implemented in this 

study [Chapter IV, Sections B, C]. 

D.       REQUIRED SOFTWARE 

MATLAB, version 5.3 was used to generate the data and conduct the simulations 

while EXCEL 2000 has been utilized to store all simulation results. We attempted to 

duplicate real-world conditions by selecting transmission channel models obtained from 

field measurements [RIC00]. Further details regarding the transmission channel types 

considered are presented in Appendix C. 



II.       DIGITAL COMMUNICATION SYSTEMS AND MODULATION 
SCHEMES 

This chapter presents a brief overview of basic communication systems and 

popular digital modulation schemes. 

A.        INTRODUCTION TO DIGITAL COMMUNICATION SYSTEMS 

With the explosion in the computer industry of the last fifteen years we now have the 

ability to process digital information with speeds that no one could have ever imagined a 

few decades ago. The basics of a digital communication system are described in Figure 

II-1. Communication basically means transmission of binary information sequences {bk}. 

Such sequences are encoded prior to transmission to make the transmitted signal more 

robust to noise, interference and other channel degradations. Next, the resulting signal 

dk (t) is modulated by a sinusoidal carrier and passed through a transmitter filter to limit 

the signal bandwidth prior to transmission. The transmitted signal   sk(t)   does not 

normally reach the receiver without distortion, which can be due to white gaussian, 

colored noise or other narrowband signal interferences. 

This study will utilize baseband signals exclusively, as heterodyning down 

transmitted signals is usually conducted at the receiver to decrease the needed sampling 

rates prior to further processing.    Therefore, we will assume that the carrier has been 



estimated correctly and that no distortion in the received signal is produced as a result of 

estimation errors in the carrier frequency. 
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Figure II-1. Digital Communication System Model. 



B.        DIGITAL MODULATION TECHNIQUES 

Introduction 

Almost all modern communication systems use digital modulation techniques as 

they have many advantages over analog modulation schemes. For instance, digital 

modulation techniques offer greater noise immunity and robustness to channel 

distortions, easier multiplexing of various forms of information (e.g. voice and data), and 

greater security [MPRGOO]. Several factors influence the choice of a digital modulation 

scheme. Ideally, a desirable modulation scheme provides low bit error rates at low- 

received signal-to-noise ratios, has a good performance in multipath and fading 

conditions, occupies a minimum bandwidth, and is easy and cost-effective to implement. 

Existing modulation schemes do not simultaneously satisfy all of these requirements. 

Some are better in terms of the bit error rate performance, while others are better in terms 

of bandwidth efficiency. As a result, trade-offs need to be made when selecting a digital 

modulation depending on the demands of the particular application. For example, higher 

level modulation schemes (M-ary keying) require small bandwidth but higher received 

power than other schemes. 

Some of the most widely used digital modulation techniques are summarized in 

Table II-1 below. This study will concentrate on 2-FSK, 4-FSK, 8-FSK, 2-PSK, 4-PSK, 

8-PSK, 16-QAM, 64-QAM and 256-QAM modulation schemes. 



Linear Modulation 
Techniques 

Constant Envelope 
Modulation 
Techniques: 

Combined Linear and 
Constant Envelope 

Modulation 
Techniques 

Spread Spectrum 
Modulation 
Techniques 

BPSK: Binary Phase 
Shift Keying 

BFSK: Binary 
Frequency Shift Keying 

MPSK: M-ary Phase 
Shift Keying 

DS-SS : Direct 
Sequence Spread 

Spectrum 
DPSK: Differential 
Phase Shift Keying 

MSK: Minimum Shift 
Keying 

QAM: M-ary 
Quadrature Amplitude 

Modulation 

FH-SS : Frequency 
Hopped Spread 

Spectrum 
QPSK: Quadrature 

Phase Shift Keying 

GMSK: Gaussian 

Minimum Shift Keying 

MFSK: M-ary 

Frequency Shift Keying 

Table II-1. Popular Digital Modulation Schemes. 

2.        M-ary Frequency Shift Keying Modulation Scheme 

M-FSK (or M-ary FSK) transmits digital data by shifting the output frequency 

between M predetermined values (i.e., states). M-FSK is not particularly spectrally 

efficient, but offers advantages such as immunity to amplitude noise, bit rate higher than 

baud rate, and constant transmitter power [GREOO]. M-FSK requires less transmitted 

power for the same information rate than other digital modulation schemes do because it 

does not contain any AM components, as is the case for example for M-QAM. Thus, M- 

FSK allows transmitter power amplifiers to operate close to their saturation levels. In M- 

FSK modulation the M different frequencies on which the transmitted message is 

quantized are given by: 

sk(t) = g(t) cos 
TV 

(nc+k)t , 0<t<T,k = l,2,...,M, (2.1) 
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where g(t) is the signal pulse shape, T is the symbol duration, and/c = nj2T is the 

carrier frequency for a fixed integer nc [WIL99]. 

3.        M-phase Shift Keying Modulation Scheme 

The most common form of modulation in digital communication is M-ary phase 

shift keying (M-PSK). With this method, symbols are distinguished from one another by 

the phase changes, while the amplitude remains the same. A digital symbol is represented 

by one of M different phase states of a sinusoidal carrier. The typical M-PSK waveform 

is given by: 

sk{t) = g{t)-cos{27tfct^{k-Vj), 
M 

(2.2) 

0<t<T , k = \,2,...,M, 

where g(t) is the signal pulse shape, M is the number of the possible phases of the carrier, 

T is the symbol duration and fc is the carrier frequency [PR095, pp.l77,eq.4.3-l 1]. 

Figure II-2 plots the constellations for 2-PSK, 4-PSK, and 8-PSK modulation schemes. 
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Figure H-2. 2-PSK, 4-PSK, 8-PSK constellations. 
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4.        M-QAM Modulation Scheme 

QAM is designed to transmit two separate signals independently with the same 

carrier frequency by using two quadrature carriers COS{2Kfct) and sin(2;r/c0. These two 

separate modulated signals are then added and transmitted. This structure of QAM allows 

for M discrete amplitude levels (M-QAM), and thus permits a symbol to contain more 

than one bit of information. The general form for a M-QAM signal is given by: 

sk (0 = akg{t) cos(2x fct) - bkg{t) sm(2z fet), 

0<t<T , k = l,2,...,M, '   (2.3) 

where g(t) is the signal pulse shape, and ak and bk are the information-bearing signal 

amplitudes of the quadrature carriers [PR095, pp.179, eq.4-3-19]. 16-QAM, 64-QAM 

and 256-QAM constellations are shown in Figure H-3. 
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Figure II-3. 16-QAM, 64-QAM and 256-QAM constellations. 
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QAM is standardized in terms of the number M of discrete levels number which is 

chosen to be a power of 2 so that each symbol can be represented by a specific number of 

bits. For example, in 256-QAM, the number of discrete levels M=256= 28, and every 

symbol is encoded with 8 bits. Therefore, higher order M-QAM schemes are much more 

spectrally efficient, being however, quite susceptible to noise and fading. As a result, 

higher order M-QAM schemes are more often used nowadays in cable transmission 

systems rather than wireless systems where transmission degradation may be worse. 

5.        Pulse Shaping Filters 

Most digital communication signals, especially wireless ones, have limited 

bandwidth available to allow for simultaneous transmission of several messages. As a 

result, the modulated signal is passed through a transmission filter prior to transmission. 

In addition, transmission channels are usually band-limited, which leads to inter-symbol 

interference (ISI) in the transmitted signal. Therefore, it is important that the transmission 

filter be designed not to further increase the amount of ISI in the transmitted signal. 

Raised cosine filters are designed so that the ISI introduced by the filter band-limited 

structure is equal to zero when sampled at correct sample points [EVAOO]. The raised 

cosine impulse response and frequency response are respectively given by: 
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x(?) = sinc(—) 

,7Cßt. cos(-y-) 

1-0 2ßt)2 (2.4) 

X(f) = { T i —<l-cos 
21 
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<f<l^ 
22" 

/> 111 
IT ' 

(2.5) 

where T is the symbol period and ße [0,1] is called the roll-off factor, or excess 

bandwidth. Figure II-4 shows the raised cosine filter spectral characteristics and the 

corresponding pulses for ß=0, 0.5 and 1. 
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III.      WIRELESS TRANSMISSION CHANNELS 

Chapter II briefly discussed  digital  modulation  fundamentals.   Chapter III, 

considers issues relevant to radio-wave propagation. 

A.       DESCRIPTION 

Wireless environments have some inherent peculiarities concerning the signal 

transmission. There is a certain degree of randomness incorporating all those natural and 

sometimes unpredictable factors that might exist, such as geographical terrain, 

atmospheric conditions, temperature, other transmissions, even relative speed between 

transmitter and receiver. There are two main types of approaches to model a wireless 

transmission channel. A possible approach is to use statistical methods based on 

propagation laws. The other one is to apply empirical methods, by taking direct 

measurements in different typical wireless environments. However, no matter which 

philosophy is adopted, two main channel model categories exist; small scale fading and 

large scale fading transmission channel models. Both model types are considered next. 
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1.        Small Scale Fading 

Two different kinds of small scale fading exist in wireless propagation. Fading 

due to the "time spread", and fading due to the "doppler shift". 

a)        "Time Spread" Fading 

In a real world situation transmitted radio signals follow different paths 

due to multipath reflection. Different propagation paths result in different delay times for 

each path, and therefore a time spread between the first and the last ray can be measured. 

This phenomenon may cause intersymbol interference (ISI), as a delayed symbol 

overlaps with another one that follows. A channel subject to time spread looks like a 

series of pulses in the time domain, as shown in Figure IH-1. 

Figure IH-1. Time Spread Effect in Small Scale Fading. 
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b)        "Doppler Shift" Fading 

Whenever there is a relative speed between a transmitter and a receiver, 

the carrier frequency at the receiver is shifted from that at the transmitter due to the 

Doppler effect. This frequency shift is given by: 

y*         relative   f 
d~ Jc ' (3-1) 

where vrelative is the relative speed between the transmitter and the receiver, 

c is the speed of light and fc is the carrier frequency [RAP99, p. 165]. As a result, a 

broadening of the signal spectrum is observed. For the case of a sine wave, this frequency 

dispersion can be characterized by the U-shaped power spectrum given in Equation 3.2 

and shown in Figure IEE-2 [HAA96]. The frequency range where the power spectrum is 

nonzero defines the Doppler spread fd. 

nfd 

sc(f)=- 
1-4 

|/I*f 

l/l > f< 

(3.2) 
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Figure III-2. PSD of a Sine Wave with a Doppler Shift. 

2.        Free Space Path Loss 

Free space path loss concerns the attenuation of the signal strength with the 

distance from the transmitting source. In free space propagation the relationship between 

the transmitted and the received power is given by: 

P=RG,G, i ^i Wä \And 
(3.3) 

where Pr is the received power, Pt is the transmitted power, Gt is the transmission gain 

and GR is the reception gain. Equation 3.3 shows that the strength of the received power 

of a radiowave falls off as the inverse square of the distance between the transmitter and 

the receiver. 
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B.        TRANSMISSION CHANNEL MODELING 

The implementation of a realistic transmission channel is essential for the 

performance evaluation of every signal classification method. Such a specification is 

essential as the transmission channel can severely affect the transmitted signal either by 

increasing the inter-symbol interference or by lowering the effective SNR level. This 

study will solely discuss small scale fading situations, that is, time spread fading and 

Doppler shift fading. 

1. Additive White Gaussian Noise Channel Model 

The most common textbook channel is the additive white Gaussian noise 

(AWGN) channel, where the desired signal is degraded by thermal noise associated with 

the physical channel itself and/or other hardware used in the link. The AWGN-only 

channel is close to reality in some cases, such as space communications and forward path 

cable television (CATV). 

2. Raised Cosine Channel Model 

Rappaport [RAP, p. 146, Eq. 4.12] introduces the impulse response of a multipath 

channel when receiver and transmitter are not in relative motion. Ideally this impulse 

response consists of a series of delta functions with decaying magnitudes (Figure III-l). 
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For all practical purposes these delta functions may be replaced with raised cosine 

functions that can be easily implemented in the real world. Time-spread between the 

multiple ray-paths and attenuation due to multipath propagation will be the two 

parameters that this channel takes into account. The analytic expression for the three-ray 

channel transfer function is given by: 

A(?) = sinc — T-rrf+m,-sine  -\ 7-7- —r-+m,-sinc  '  
Ti  1   40¥       '        {   T   )  j   4ß2(t-dJ       -        {   T   J  }   4ß2(t-d2f 

(3-4) 

where T is the symbol duration, ß is the filter's roll-off factor, ml is the attenuation of 

the 2nd ray, dx is the time difference between the 1st and the 2nd ray, m, is the attenuation 

of the 3rd ray and d2 is the time difference between the 1st and the 3 rd ray. Figure IH-2 

plots the impulse response and the spectrum of a 3-ray raised cosine channel model. 
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Figure III-3. Impulse response and spectrum for the 3-ray raised cosine channel model, 
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3.        Rayleigh Channel Model 

Rayleigh fading distribution is often used in wireless mobile communications to 

describe the statistical time varying nature of the received envelope of a flat fading 

signal, that is, a signal that has all ray paths attenuated uniformly. This means that there is 

no line of sight path between the transmitter and the receiver [LAU94]. This model may 

take into account the fact that the transmitter and the receiver might be in a relative 

motion, therefore time spread and Doppler shift may also be considered. The generic 

discrete expression of the received signal in a Rayleigh channel environment is given by: 
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rk = aksk+nk , (3.5) 

where ak is a Rayleigh random variable, sk is the signal sequence and nk is noise. The 

envelope of a Rayleigh faded signal is shown in Figure ni-4 [RAP99, pp. 173, Figure 

4.15]. Deep fades occur when multipath components cancel one another. For the case 

where there are two principal components, this occurs when the difference in path lengths 

is multiple of half a wavelength. This is the cause of selective fading when the signal has 

finite bandwidth. 
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Figure HI-4. Envelope of a Rayleigh faded signal, fe = 900Mhz, receiver 
speed=120Km/hr [RAP99, Figure 4.15]. 
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The most popular model for simulating a Rayleigh fading signal is Clarke's model 

[RAP99, pp. 177-185]. This model assumes a fixed transmitter and a moving omni- 

directional receiver. Clarke showed that the power spectral density S(f) of the electric 

field in a Rayleigh fading environment, is generally given by Equation 3.6 [RAP, p. 180, 

Eq. 4.76]: 

A[p(a)G(a) + p(-a)G(-a)] 
S(f) 

'f-fc f f_fV 
/Jl- 

fa \    Jd     J 
(3.6) 

where fd is the Doppler shift due to receiver's motion, fc is the carrier frequency, A is the 

average received power with respect to an isotropic antenna, G(a) is the azimuthal gain 

pattern of the mobile antenna and p(a) is the received power within an angle a. 

4.        Ricean Channel Model 

For Ricean fading there is a strong, constant component to the signal, in addition 

to the multiple random components of Rayleigh fading, due to multipath propagation 

[RAP99, pp. 174-176]. Ricean fading is typical in line-of-sight situations, where there is 

a direct path between transmitter and receiver, as well as reflecting or scattering 

phenomena. The Ricean case is often considered a characteristic of short-term indoor 

propagation, while the Rayleigh model fits well with outdoor, short-term propagation. 
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IV.      INTRODUCTION TO SIGNAL EQUALIZATION 

Chapter III presented an overview of the effect of the wireless environment on the 

transmitted signal. In real world situations the transmission channel is a critical factor that 

may cause unrecoverable distortions on the signal, especially in higher order digital 

modulations, such as in 256-QAM, where the effect of a propagation channel may 

corrupt the signal constellation even at high SNR levels. Figure IV-1 shows a 256-QAM 

sequence constellation obtained for SNR equal to 40dB at the transmitter. Figure IV-2 

presents the constellation obtained by passing this 256-QAM signal through a severe 

urban area channel model [Appendix C, channel 11]. To compensate for this distortion, 

modern receivers use signal equalization extensively, in an attempt to undo the effects of 

the propagation channel. This chapter will discuss two types of signal equalization: the 

Constant Modulus Algorithm - Fractionally Spaced Equalizer (CMA-FSE) blind 

equalization method and the Alphabet Matched Algorithm (AMA) equalization method. 

A.        THE CMA-FSE ALGORITHM 

The constant modulus algorithm with fractionally spaced equalizer (CMA-FSE) 

belongs to a category of equalization methods called blind equalization methods which 

are designed to undo the channel effect without any knowledge of the channel itself. The 
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CMA-FSE is the integration of two different parts: the constant modulus algorithm 

(CMA) and the fractional spaced equalizer (FSE). 
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1.        Constant Modulus Algorithm 

The Constant Modulus Algorithm (CMA) is a stochastic gradient algorithm, 

designed to force the equalizer weights to keep a constant envelope on the received signal 

[HAY96, pp. 365-372, RAP99, pp.304]. Thus, it is designed for problems where the 

signal of interest has a constant envelope property. However, extensive simulations have 

shown that it still can be used in amplitude-phase modulation types with success, when 

the number of states is low, and is routinely used in today's applications. As a result, the 

CMA is expected to have better performance for M-FSK and M-PSK rather than M- 

QAM types. The CMA cost function is given by: 

J(n) = E{(\s(n)f-y)2}, (4.1) 

where s(n) is the signal to equalize and y is a positive real constant called the "dispersion 

constant" defined by: 

v-
EsAA 

Y—B—' (4-2) 
■^5,2,2 

where Es 44and ESX2 are the 4th and 2nd order moments respectively [CJJOO]. These 

moments are described further in Chapter V. The cost function J(n) is minimized 

iteratively using a gradient-based algorithm with update equation: 
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h(n +1) = h(n) - fNJ{n), (4-3) 

where h is the tap-weight vector and^u is the step-size parameter [HAY96, pp. 794-795]. 

2. Fractional Spaced Equalizer (FSE) 

In any standard CMA equalization system, the coefficient taps are baud-spaced 

that is, the sampling frequency of the equalizer is the baud frequency of the received 

signal. However, it is often desired to use an equalizer with taps spaced at a fraction of 

the data symbol period T, or sampled at a multiple of the symbol rate. This configuration 

gives the extra degrees of freedom to perform additional filtering operations such as 

matched filtering and adjustment of sampling phase [HAJ99]. Such a scheme is called 

fractional spaced equalization (FSE). In a fractional spaced equalizer, the channel model 

is sampled usually at twice the symbol rate and the equalizer output is evaluated only at 

T-spaced intervals to obtain the equalized signal. 

3. CMA-FSE Scheme 

The implementation of a fractional spaced equalizer using the constant modulus 

criterion combines the advantages of both concepts into one system. This system is 

shown in Figure IV-3. The propagation channel is assumed to be linear and time 
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invariant. Therefore, the channel C is modeled with a time-invariant finite impulse 

response (FIR) filter with coefficients £ = [c0,c],...cQ_l]
T. The equalizer is also described 

by  a  N-coefficient  vector/ = [/0,yj,...,/A,_1]
rand  the   overall   system  response   is 

described  by the  P-coefficient  vector   h = \h0,hx,...hp_^\ .  The  filtering  operation 

performed by the equalizer can be viewed as the convolution of the sampled received 

sequence with the equalizer coefficients. Therefore, the overall system response is 

h-C-f, where C is the PxNchannel convolution matrix given by Equation (4.4) 

below [JA098, pp. 1930, Equation 5]. 

" co 

C\ C0 

C2 Cl C0 

C2 Cl 

CQ-\ Cl •■     c0 

CQ-\ 
\ ••     c, 

CQ-\ •.     c. 

CQ-\ _ 

(4.4) 

PxN 
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Figure IV-3. CMA-FSE Implementation Block Diagram. 

4.        Example 

The CMA-FSE algorithm is tested on 4-PSK, 16-QAM, 64-QAM and 256-QAM 

modulation type signals where the SNR is set to 40dB for all cases. The purpose of this 

test is to find the limits of the highest constellation order that the CMA-FSE algorithm is 

able to clear. The CMA-FSE algorithm is implemented in MATLAB. The code was 

developed by researchers at the Blind Equalization Research group, Cornell University, 

and is presented in Appendix D. Figure rV-4 shows the impulse response of the 

propagation channel that the CMA-FSE scheme attempts to undo the effect of. This 

channel is a 2-path channel and is a typical example of a rural area environment. 
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Figure IV-4. Impulse response of a rural area propagation channel. 
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Figure IV-5. 4-PSK constellations; before and after applying the CMA-FSE algorithm. 
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Figure IV-7. 64-QAM constellations; before and after applying the CMA-FSE algorithm. 
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Simulations show that the CMA-FSE implementation cancels the channel effect 

almost perfectly for modulations up to 16-QAM, as illustrated in Figures IV-5 and IV-6. 

Performances degrade for higher constellations. Figure rV-7 shows that the constellation 

type is still recognizable for 64-QAM, but Figure rV-8 indicates that CMA-FSE fails for 

256-QAM. This is to be expected that this scheme was designed for constant magnitude 

modulations and not for QAM schemes, especially of higher order. 

B.        THE ALPHABET MATCHED ALGORITHM (AMA) 

Applying the CMA for blind equalization is an efficient way to cope with QAM 

signals with relatively low order constellations. However, a different type of processing is 

needed to recover QAM signals with high constellation types. A possible alternative is to 

implement a non-blind approach which takes advantage of the specific information 

contained in a given signal type, such as constellation centers for example. Such an 

approach has been considered recently by [BSC98] and [BAROO] and will be discussed 

next. 

1.        Introduction 

The Alphabet Matched Algorithm (AMA) is an equalization scheme that uses a- 

priori knowledge of the constellation centers for QAM signals with a specific number of 

states M. This approach was first reported by [BSC98] for M-QAM of low constellation 
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orders [BAROO]. Barbarossa et. al. modified the original AMA to make it more robust in 

high constellation environments [BAROO]. The AMA implementation consists of a bank 

of FIR equalizers where each one is matched to a specific constellation type, as shown in 

Figure FV-9. The equalizer that achieves the smallest cost function after convergence 

indicates the modulation type [BSC98]. 
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Figure rV-9. AMA classifier. 

Let us examine a single branch of Figure rV-9 only, as similar findings hold for 

the others. Assume the L-tap FIR equalizer weight vector is denoted by: 

h(n) = [h0(n),...,hL_l(n)]. (4.5) 
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Applying the equalizer filter to the input signal sequence s(n) leads to the 

equalizer output z(n): 

L-\ 

z(n) = Y,h,(n)-s(n-l). 
(4.6) 

/=o 

The basic difference between the CMA and the AMA implementations lies in the 

definition of the cost function Jk{n) associated for the k* constellation defined as: 

Jk(n) = E{ >-z 
M     -\z(n)-ck(if 

'2az 

i=\ 

(4.7) 

,th where M represents the total number of centroids for the k   constellation, z(n) is 

the output of the equalizer, ck(i) is the i* centroid of the k4 constellation, and 0 is a 

constant chosen so that: 

^(D-cdfßo2 ^0        v/ *l. (4.8) 

Basically, Equation (4.8) determines the allowed distance between the centroids 

and the equalizer output. The smaller the value of a, the bigger the penalty of the cost 

function on the equalizer output. Figure IV-10 shows the AMA cost function obtained for 

a 64-QAM constellation modulation type. 
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Figure IV-10. AMA cost function for 64-QAM with o=0.05. 

As before, the cost function Jk is minimized iteratively using a gradient descent 

algorithm. The update equation for the filter coefficients is given by: 

h{n+l)=k(n)-lNJkWJ\, k=\..P, (4.9) 

where// is the step size, and P is the total number of QAM constellation considered. The 

gradient derivation is presented in Appendix A, and the final expression is given by: 
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M 

V/t(Ä) = S 
/=1 

äTs-ck(i)\ 

2<x2 Q?s_-ck(i))*-s_ (4.10) 

where 5 = [s{n), s(n-\),... s(n - L)]' is a portion of the input signal with length equal to 

the length of the filter equalizer. 

2.        Example 

The AMA algorithm was tested on 16-QAM, 64-QAM and 256-QAM modulation 

signals with a SNR level of 40dB. Each signal was passed through the same propagation 

channel, as in the earlier CMA-FSE simulations considered in Section A. Next, the 

CMA-FSE algorithm was applied to the resulting transmitted signal to provide a good 

initialization to the AMA. Such a two-step process was followed as results have shown 

the AMA has good local convergence but needs good initialization [BAR00, p. 177]. 

Note that the CMA is known to have good global convergence properties when the 

symbol set is close to being constant modulus, even when the initialization is poor. 

Therefore, cascading both schemes should allow for a more robust modulation type 

decision. As a result, the AMA algorithm is initialized when the CMA-FSE converges. 

Figures TV-IO, IV-11 and rV-12 show the simulation results. The MATLAB 

implementation of the AMA algorithm is presented in Appendix D. 
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Figure IV-11. 16-QAM constellations; before and after applying the AMA algorithm. 
SNR=40dB, step size u=0.01, a=0.174, 2000 samples, 21 equalizer taps. 
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Figure IV-12. 64-QAM constellations; before and after applying the AMA algorithm. 
SNR=40dB, step size u=0.01, c=0.1174, 2000 samples, 21 equalizer taps. 
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Figure IV-13. 256-QAM constellations; before and after applying the AMA 
algorithm. SNR=40dB, step size u=0.01, o=0.05, 2000 samples, 21 equalizer taps. 
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Results show the AMA gives very good results in the first two cases. Even in 256- 

QAM, where the CMA-FSE has no effect, the AMA algorithm recovers a portion of the 

constellation. Simulations showed that the key to the AMA algorithm convergence is the 

value of a and the step size. Recall that the parameter a controls the sharpness of the cost 

function peaks. Simulations showed that some samples of the signal can potentially be 

assigned to the wrong centroid when a is selected too large, due to overlap of the cost 

function nulls (Figure IV-10). In addition, the AMA may not converge, when the step 

size is chosen too large or too small. 
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V.        MOMENTS AND CUMULANTS 

Chapter III gave a brief description of the major propagation channels and then- 

resulting effects on the quality of the received sequence at the receiver. Chapter IV 

discussed two different equalization schemes designed to minimize channel distortions 

effects (CMA-FSE and AMA algorithms). This chapter focuses on identifying features 

that can be used to identify signals subjected to various types of distortion. As mentioned 

earlier in Section 1 .C, higher-order statistics have been extensively used to extract unique 

signal features. Higher-order statistics is a field of statistical signal processing which 

makes use of additional information to that usually used in 'traditional' signal processing 

measures, such as the power spectrum and autocorrelation function. Advantages of higher 

order statistics include the ability to identify non-Gaussian processes and non-minimum 

phase systems, and to detect and characterize signal non-linear properties. Higher-order 

statistics lead to the definition of two directly related parameters: statistical moments and 

cumulants, which are described next. 
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A.       MOMENTS 

1.        Definition 

Probability distribution moments are a generalization of the concept of the 

expected value, and can be used to define the characteristics of a probability density 

function. Recall that the general expression for the i'h moment of a random variable is 

given by: 

M1=)(s-ju)if(s)ds, (5.1) 

where u is the mean of the random variable. The definition for the i'h moment for 

a finite length discrete signal is given by: 

A=i>*-/o''/(**)» <5-2> 

where N is the data length. In this study signals are assumed to be zero mean. 

Thus Equation 5.2 becomes: 
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Next, the auto-moment of the random variable may be defined as: 

Es,p+,p=E[s>(sy], (5.4) 

where p and q represent the number of the non conjugated terms and number of 

the conjugated terms, respectively, and p+q is called the moment order. For example, for 

p=2 and q=0, Equation 5.4 becomes: 

EsX2 =E[s\Sy] = E[s2] = M2 =I>*7(*J, (5-5) 
A-l 

which is the second moment or the variance of the random variable. In a similar 

way, expressions for  Es2l,EsAA,EsX4, etc...may be easily derived. Note that the 

normalized moments Es33 and Es4i are called Skewness and Kurtosis respectively. 

Skewness is a measure of the symmetry of the pdf, whereas Kurtosis is the degree of 

peakedness (density of peaks) of the pdf.    v 

2.        Explicit Calculation of Major Moments 

Selecting second or higher order moments has already proved to be promising to 

characterize communication signals, as they may be used to describe the shape of the pdf 

of a distribution completely [MAB97]. In a sense, the sequence of moments is analogous 
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to the components of a Fourier sequence; the first few terms describe the general shape 

and the later terms add up to more detail. Therefore it is useful to derive expressions that 

give some commonly used higher order moments. 

Assume a zero mean discrete base-band signal sequence of the form 

sk=ak+j-bk. Using the definition of the auto-moments (Equation 5.4), the expressions 

for moments of order 2, 4, 6 and 8 may be easily derived. Complete derivations are given 

in Appendix B, and the results are summarized in Table V-l. 

ORDER 2 

ORDER4 

ORDER 6 

ORDER 8 

"^5,2,2 E[a2-b2] 

■^5,2,1 E[a2 + b2] 

F 
^SAA E[a4 + b4-6a2b2] 

As,4,3 E[a4-b4] 

As,4,2 E[a4 + b4 + 2a2b2] 

F E[a6-b6+l5a2b4-l5a4b2] 

E E[a6 + b6-5a2b4-5a4b2] 

F 
E[a6-b6-a2b4 + a4b2] 

"^S,6,3 E[a6 + b6 + 3a2b4 + 3a4b2] 

F E[a% +b*- 2Sa6b2 + 70a V - 2Sa2b6] 

F ■^5,8,7 E[as-bs-l4a6b2 + l4a2b6] 

-^5,8,6 E[as + b*-4a6b2-10a4b4-4a2b6] 

F 
-^5,8,5 E[a*-b* + 2a6b2-2a2b6] 

■^5.8,4 E[a* + b* +4a6b2 +6a4b4 +4a2b6] 

Table V-l. Statistical moments; zero-mean sequence of the form^ = ak + j-bk 
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B. CUMULANTS 

1.        Definition 

Consider a scalar zero mean random variable s with characteristic function: 

f(t) = E{e>*}. (5.6) 

Expanding the logarithm of the characteristic function as a Taylor series, one 

obtains: 

log/(0 = ^1(zO+^r^+...+^VL+...M5.7) 

where the constant kr are called the cumulants (of the distribution) of s [HYYOO]. Note 

that the first three cumulants (for zero-mean variables) are identical to the first three 

moments: 

k,=E{s} 

k2=E{s2} = EsX2 (5.8) 

k3=E{s3} = EsXr 
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The symbolism for the n* order cumulant is similar to that of the nth order 

moment. More specifically: 

C „x„ „ = Cum s,p+q,P s,.. .,s ,s ,...,1 

p     terms       q   terms 
(5.9) 

2.        Relation Between Cumulants and Moments 

The «* order cumulant is a function of the moments of orders up to (and 

including) n. Moments may be expressed in terms of cumulants as: 

Ah-^YP^^si 
Vv 

lyev! 
..Cum kU (5.10) 

where the summation index is over all partitions v = (Vj,...,v?)for the set of 

indexes (l,...,n), and q is the number of elements in a given partition. Cumulants may 

also be derived in terms of moments. The n* order cumulant of a discrete signal s(n) is 

given by: 

Cum[sv...,sn] = X(-Vq-\q-WE 
Vv yev, 

...E n SJ (5.11) 
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where the summation is being performed an all partitions v - (v,,...,v?) for the 

set of indexes (1,... ,ri). A simple application example for equation 5.11 is presented next. 

a)        Example 

Assume n=l. In such a case, only one partition v, can be defined. 

Therefore, q=l, and equation (5.11) leads to: 

CMm[^.] = (-l)M(l-l)!^1]^Cww[5I] = £[51]. (5.12) 

Assume n-2. In such a case, the available set of indexes is 1 and 2, and 

two different types of partitioning may be obtained for that set. Thus, v = (v,, v2). The 

partitions are: 

• (1,2) with q=l, 

• (l),(2)withq=2. 

Therefore, equation (5.11) becomes: 

Cum[s,,s2} = {-ir\\-\)\E[sxs1} + {-\f-\2-\)\E{si)E[s2}=> 

Cum[s^, s2] = .£[.V2 ] - .£(.5, )E[s2 ]. 
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Finally, assume n=3. In such a case, the available set of indexes is (1,2,3), 

and four different types of partitioning may be obtained for that set. 

Thus,v = (v,,v2,v3,v4). These partitions are: 

• (1,2,3,) leading to q=l, 

• (1), (2,3) leading to q=2, 

• 2, (1,3) leading to q=2, 

• 3, (1,2) leading to q=2, 

• (l),(2),(3)leadingtoq=3. 

Therefore, Equation (5.11) becomes: 

GH>I ^2^3]=(-i)w0- i)!£[w3]+ 

+(-l)2-:(2-l)!£[51]£[5253]+ 

+(-d2-](2-l)lE[s2]E[s&]+ 

+(-lf-\2-l)\E[s3]E[^2]+ (5.14) 

+(-l)w(3-l)!^]Efc]£fe]=> 

Cunis1,s2,s3]=E[sls2s3]-E[sl]E[s2s3]-E[s2]E[sls3]-E[si]E[sls2]+ 

+2£[51]£[J2]£[53]. 

Marchand computed similar cumulant expressions up to the 8th order 

[MAR98, pp. 173-174], and these are presented in Table V-2. 
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Order 2 

Order 4 

Order 6 

Order 8 

C      = F ^"s.2.2 s.2.2 

C     = E ^1,2.1      ^,2,1 

C     =F     -3F     2 
~s,4,4      ■c'j,4,4      JI-'s,2,2 

^s,4,3 = "^.4,3 — 3Es22Es2] 

^i-,4,2 — ^i,4,2      ^ .s.2.2        ^j.2,1 

Cs,6,6=E^6-l5Es„EsAA+30EsJ 

^,6,5 — -^J,6,5   i-0Es22Es43   5Es2:EsAA+30Es22 Es2] 

^,6.4 ~ ^-s.6,4      ^-s.l.l^sAA      °Es.2,\EsA.$      "^,2,2^.4,2 + "-^,2,2 

+ 24ESJESX2 

C,M=EM-6E,^E,A3-9EJME,M+1SEM-E1M +l2EsX] 

C,A8 = £,A8 " 35^,4,4
2 - 630Esaa

4 + 420EsPjEsAA 

C,*.i = £,8.7" 35£iAA<.3 - 630^.2.2X.2, + 210EsAAE,X2EsXl 

+210Es22EsA2 

Cs,, =EsX6-l5EsAAEsA2 -20ESA/ +30EsAAEsX{ +6QEsAAEsXl
2 

+240EsA3EiX]Es22 +90EsMtE,J -90EsX2< -540Es22\2i
2 

Cs,ss=Eas-5E5AAEiAa-30EsA,EsA2+90EiAiEsJ + \20EsA_3EsX) 

+1 SOEsA2Es2,Es22 + 30EsAAEs22EsX, - 270EsX2%x, 

-360Es2/Es22 

CM=EsU-Ej-mJ-\6Ej-mJ-\^J-AVEs22
2Ej 

+UEsAßJ+9&-sA£sXEs22+\msAßJ+imsAßJ 

~™EsA2psZ!psZ\ 

Table V-2. Relationships between cumulants and moments [MAR98]. 
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3.        Transformations of Moments and Cumulants 

The behavior of higher order moments and cumulants to various transformations 

is an important factor in determining how useful these quantities may be to characterize 

signals in systems. 

a) Translation 

The only effect of translation on the received signal is only the mean 

changes. The variance and all the higher order moments or cumulants remain unaffected. 

b) Rotation 

The rotation of the received signal's constellation, due to multipath or 

other distortions, affects the relative variances and higher order moments or cumulants, 

though certain other parameters such as the eigenvalues and the covariance matrix are 

invariant to rotation. 
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VI.      INTRODUCTION TO NEURAL NETWORKS 

Chapter V discussed the use of higher order statistics as features for digital signal 

classification. This chapter will give a brief overview of neural networks that will be used 

to process some of these features in order to identify the various digital modulation 

sequences. Neural networks are iterative, nonlinear schemes that attempt to imitate the 

way a human brain works. Rather than using a digital model, in which all computations 

manipulate zeros and ones, a neural network works by creating connections between 

basic processing elements called neurons. The organization and weights of the 

connections determine the output of the neural network. 

A.       BIOLOGICAL NEURON MODEL 

The brain is a collection of about 10 billion interconnected neurons, where each 

neuron is a cell that uses biochemical reactions to receive, process and transmit 

information. Figure VI-1 shows a rough drawing of a biological neuron. A neuron's 

dendritic tree is connected to a thousand neighboring neurons. A positive or negative 

charge is received by one of the dendrites when one of those neurons fires. The strengths 

of all the received charges are added together through the processes of spatial and 

temporal summation. Spatial summation occurs when several weak signals are converted 

into a single large one, while temporal summation converts a rapid series of weak pulses 
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from one source into one large signal. The aggregate input is then passed to the soma 

(cell body). The soma and the enclosed nucleus do not play a significant role in the 

processing of incoming and outgoing data. Their primary function is to perform the 

continuous maintenance required to keep the neuron functional. The part of the soma that 

does concern itself with the signal is the axon hillock. If the aggregate input is greater 

than the axon hillock's threshold value, then the neuron is energized, and an output signal 

is transmitted down the axon. The strength of the output is constant, regardless of 

whether the input was just above the threshold, or a hundred times as larger. 

■Synaip*«? 

ÄxHt* 

Mydeus 

C«H body 

J 
Dp»d«iJPS 

Figure VI-1. Schematic drawing of a biological neuron. 
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B.        ARTIFICIAL NEURON MODEL 

As complicated as the biological neuron is, it may be represented by a very simple 

model, as illustrated in Figure VI-2. The neuron can have any number of inputs p. which 

are each multiplied by a weight wj representing the strength of the contribution to the 

neuron. Then, all weighted inputs are summed and biased with a value b. This bias is an 

additional weight associated to a constant input taken equal to one. Bias parameters add 

additional flexibility to a network by allowing the network hyperplane decision boundary 

not to be constrained to pass through the origin. Such a constraint usually results in 

performance degradations, and for this reason neural network implementations most 

often include bias terms. 

In addition, each neuron has a transfer function / that transforms the sum of all 

weighted inputs to give the final neuron output a. A large variety of linear or nonlinear 

transfer functions may be selected, and the specific choice depends upon the exact 

application the neuron is built for. A list of the most common transfer functions is shown 

in Table VI-1. A neural network usually consist of many interconnected neurons that 

form serial processing layers, as shown for example in Figure VI-3 which illustrates a 

feed-forward network. Numerous other configurations exist and further details may be 

found in [HDB96, Section 19.14]. 
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Figure VI-3. Multilayer Neural Network. 
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Table VI-1. Activation functions. 

C.       TYPES OF NEURAL NETWORKS 

Many different types of neural networks can be designed to perform a specific 

task. Some of the more popular types include the multilayer perceptron [HDB96, Section 

11-2] which is generally trained with the backpropagation algorithm [HDB96, Section 

11-7], learning vector quantization [HDB96, Section 14-16], radial basis function 

[HDB96, Section 12-2], Hopfield [HDB96, Section 3-12], Kohonen [HDB96, Section 13- 

15] and others... Some neural networks are classified as feed-forward while others are 
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recurrent (i.e., implement feedback) depending on how data is processed through the 

network. Another approach to classify neural network types is by learning (or training) 

method, as some neural networks employ supervised training while others are referred to 

as unsupervised. In supervised implementation the network is trained using labeled data, 

i.e., fed with input data with associated known a-priori target outputs. Unsupervised 

algorithms do not take advantage of labeled data. They essentially perform clustering of 

the data into similar groups based on the input features characteristics. 
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VII.    DIGITAL MODULATION CLASSIFICATION SCHEME 

Chapter VI reviewed the main concepts behind multi-input neural networks. 

Chapter VII discusses the specific overall classification scheme derived to differentiate 

between the various digital modulation schemes considered in this work. Note that we 

take into account effects due to additive Gaussian noise and multi-path environment. Our 

classification scheme combines a hierarchical approach, where one or two specific 

features are used to separate between given sets of classes. Such separation is done with 

simple neural networks which are used to "model" the effects due to additive Gaussian 

noise and multi-path in the transmission channel. 

The features selected to differentiate between the various digital modulation 

schemes considered in our work are a combination of moments and cumulants. We 

discussed in Chapter V the concepts of higher-order moments and cumulants, and 

reviewed earlier work proposed by Marchand who investigated a cumulant-based 

modulation classification [MML97]. Specifically, Marchand calculated theoretical values 

for moments and cumulants up to the 8th order for 2-PSK, 4-PSK, 8-PSK, 16-QAM, 64- 

QAM and 256-QAM schemes [MAR98, p. 178, Table B.l]. These values have been 

verified and corrected for minor sign errors and are presented in Tables VII-1 through 

VII-8. Note that all moments and cumulant values are normalized by the theoretical 

signal power P. 
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Td order 

moments 

2-PSK 4-PSK 8-PSK 16-QAM 64-QAM 256-QAM 

F 
-° 5,2,2 

P 1 0 0 0 0 0 

■^5,2,1 

P 1 1 1 1 1 1 

Table VII-1. Theoretical 2nd order moment values for 2-PSK, 4-PSK, 8-PSK, 16-QAM, 
64-QAM and 256-QAM modulations. 

/* order 

2-PSK 4-PSK 8-PSK 16-QAM 64-QAM 256-QAM 

F 

P2 1 1 0 -0.68 -0.619 -0.604 

•^5,4,3 

P2 1 0 0 0 0 0 

■^5,4,2 

P2 1 1 1 132 138 1395 

Table VII-2. Theoretical 4th order moment values for 2-PSK, 4-PSK, 8-PSK, 16-QAM, 
64-QAM and 256-QAM modulations. 
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6"" order 

2-PSK 4-PSK 8-PSK 16-QAM 64-QAM 256-QAM 

As,6.6 

P3 1 0 0 0 0 0 

-^5.6.5 

P3 1 1 0 -1.32 -1.298 -1.288 

■^5.6.4 

P3 1 0 0 0 0 0 

■^5.6.3 

P3 1 1 1 1.96 2.22 2.29 

Table VII-3. Theoretical 6th order moment values for 2-PSK, 4-PSK, 8-PSK, 16-QAM, 
64-QAM and 256-QAM modulations. 

$"• order 

2-PSK 4-PSK 8-PSK 16-QAM 64-QAM 256-QAM 

■^5.8,8 

P4 1 1 1 2.2 1.91 1.82 

F 

P4 1 0 0 0 0 0 

F 1 

P4 1 0 -2.48 -2.75 -2.81 

F 
■^5.8.5 

P4 1 0 0 0 0 0 

F 

P4 1 1 1 3.12 3.96 4.19 

Table VH-4. Theoretical 8th order moment values for 2-PSK, 4-PSK, 8-PSK, 16-QAM, 
64-QAM and 256-QAM modulations. 
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rd order 

cumulants 

2-PSK 4-PSK 8-PSK 16-QAM 64-QAM 256-QAM 

r 
^5,2,2 

P 1 0 0 0 0 0 

c 
^S.2,1 

P 1 1 1 1 1 1 

Table VH-5. Theoretical 2nd order cumulant values for 2-PSK, 4-PSK, 8-PSK, 16-QAM, 
64-QAM and 256-QAM modulations. 

4"1 order 

cumulants 

2-PSK 4-PSK 8-PSK 16-QAM 64-QAM 256-QAM 

^5.4,4 

P2 -2 -1 0 -0.68 -0.619 -0.604 

c ^5.4.3 

P2 -2 0 0 0 0 0 

c 
P2 -2 -1 -1 -0.68 -0.619 -0.604 

Table VH-6 Theoretical 4th order cumulant values for 2-PSK, 4-PSK 8-PSK, 16-QAM, 
64-QAM and 256-QAM modulations. 
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6'* order 

cumulants 

2-PSK 4-PSK 8-PSK 16-QAM 64-QAM 256-QAM 

c 
P3 16 0 0 0 0 0 

c 
P3 16 -4 0 2.08 1.797 1.734 

r 
^S.6,4 

P3 16 0 0 0 0 0 

^5,6.3 

P3 16 4 4 2.08 1.797 1.734 

Table VH-7. Theoretical 6th order cumulant values for 2-PSK, 4-PSK, 8-PSK, 16-QAM, 
64-QAM and 256-QAM modulations. 

8* order 

cumulants 

2-PSK 4-PSK 8-PSK 16-QAM 64-QAM 256-QAM 

c 
P4 -244 -34 1 -13.98 -11.5 -10.97 

c ^S.8,7 

P4 -244 0 0 0 0 0 

c 
P4 -244 0 0 -29.82 -27.078 -26.438 

c '-'5.8.5 

P4 -244 0 0 0 0 0 

c ^5,8.4 

P4 -244 -17 -17 17379 24.11 25.704 

Table VH-8. Theoretical 8th order cumulant values for 2-PSK, 4-PSK 8-PSK, 16-QAM, 
64-QAM and 256-QAM modulations. 
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A.       FEATURE EXTRACTION 

A closer look to Tables VH-1 through VII-8 reveals that some moments and 

cumulants can be used to separate different modulation schemes while others have little 

or no use. For example, the 6th order moment  Es65can theoretically be used to 

differentiate the 8-PSK scheme from all others. 

Note that at this point it is essential to remember that Tables VII-1 to VII-8 

present the theoretical values obtained for moment and cumulants, i.e., obtained 

assuming the signal is clean and of infinite length. However, in practice signals are 

usually subject to some type of distortion, either inside the transmitter or during 

transmission, and are of finite length. In addition, channel distortion is likely to affect the 

higher order statistics of the signal, although moments and cumulants are relatively 

robust to signal distortion [Chapter V, Section B, Paragraphs 3.a and 3.b]. Moreover, no 

infinite dataset is available in practical applications, and finite data length can 

significantly affect the estimates accuracy. 

1.        Signal Sequences Creation 

Each signal used in this study was generated using MATLAB. We assumed that 

carrier frequencies were estimated correctly and the signals heterodyned down. Thus, we 

only considered complex baseband signals. The modulation types considered in this work 

include 2-PSK, 4-PSK, 8-PSK, 16-QAM, 64-QAM, 64-QAM and 256-QAM, previously 
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considered by Marchand [MAR98], and 2-FSK, 4-FSK and 8-FSK. A total of 100,000 

samples per modulation scheme were created and stored. A typical bit rate of 1Mbps was 

chosen for all simulations. The sampling frequency was chosen in such a way that all 

schemes are sampled with 4 samples/symbol, a number currently used by manufacturers 

of modulation and demodulation devices [COP00]. The digital information (message) is 

generated randomly for every trial, to ensure results are independent of the message 

transmitted. 

2.        Moments and Cumulants Estimation 

Estimating moment and cumulant values for all modulation schemes considered is 

based on the theoretical formulas provided in Tables V-l and V-2. For this process, only 

the moments and cumulants that show some special characteristics as class features are 

selected. The estimation is done on a subset of 20,000 samples per scheme, out of the 

total 100,000 samples per scheme dataset. Two different cases are examined. First, the 

signals are generated noise-free. Second, the signals are distorded by additive white 

Gaussian noise (AWGN) to form a SNR equal to 0 dB. Estimated cumulants and 

moments are presented in Table VH-9, where the values shown in parenthesis are those 

corresponding to the 0 dB case. 
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2-FSK 4-FSK 8-FSK 2-PSK 4-PSK 8-PSK 16- 

QAM 

64-QAM 256-QAM 

Es,2.2 0.5 0.25 0.25 1 0 0 0 0 0 

P (0.24) (0.12) (0.12) (0.5) (0) (0) (0) (0) (0) 

^"SAA 1 0.5 0.25 1 1 0 -0.68 -0.61 -0.6 

P2 
(0.23) (0.12) (0.06) (0.2S) (0.25) (0) (-0.16) (-0.16) (-0.51) 

ESA, 0.5 0.25 0.25 1 0 0 0 0.01 0.002 

P2 
(0.5) (0.25) (0.25) (1) (0) (0) (0) (0) (0.0004) 

E 
1 1 1 1 1 1 1.32 1.38 1.34 

P2 
(1.75) (1.75) (1.75) (1.75) (1.75) (1.75) (1.82) (1.85) (1.85) 

E 
1 0.5 0.25 1 1 0 -1.32 -1.29 -1.28 

P3 
(0.75) (0.35) (0.18) (0.75) (0.72) (0) (-0.6) (-0.6) (-0.54) 

E 
1 1 0.5 1 1 1 2.2 1.9! 1.82 

P4 
(0.25) (0.5) (0.18) (0.13) (0.18) (0.07) (0.08) (0.11) (0) 

•£5.8.6 1 0.5 0.25 1 1 0 -2.48 -2.75 -2.81 

P4 
(2.57) (1.18) (0.7) (2.64) (2.61) (0.1) (-2.37) (-2.5) (-2.25) 

E •^5.8.4 1 1 1 1 1 1 3.12 3.96 4.19 

P4 
(12.82) (12.91) (13.13) (13.02) (13) (13) (15.5) (15.9) (16.18) 

^SAA -0.1 -0.5 -0.5 _2 -1 0 -0.68 -0.619 -0.604 

P2 
(0) (-0.11) (-0.13) (-0.5) (-0.25) (-0.25) (-0.17) (-0.15) (-0.15) 

C5.6.5 1 -0.8 0.25 16 -4 0 2.08 1.797 1.734 

P3 
(0) (0) (0) (2) (-0.5) (0) (0.25) (0.23) (0.22) 

c ^5,8.8 31.6 2.45 2.45 -244 -34 1 -13.98 -11.5 -10.97 

P4 
(2.22) (0.52) (0.1) (-15.5) (-1.84) (0) (0) (-0.86) (-0.8) 

^S.8.4 -64.5 -28 -28.7 -244 -18 -17 17.37 24.11 24.7 

P4 
(66) (65.82) (66.6) (13.02) (65.5) (65.73) (15.5) (76.02) (76.18) 

3 th 
Table VII-9. Estimated values for selected moments and cumulants up to the 8   order for 

2-FSK, 4-FSK, 8-FSK, 2-PSK, 4-PSK, 8-PSK, 16-QAM, 64-QAM and 256-QAM 
modulation schemes; total samples per scheme=20,000. SNR=°°, SNR =0 dB shown in 

parentheses, P= noisy signal power. 
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Table VH-9 shows that there are small differences between the theoretical and the 

estimated values of moments and cumulants for the noise-free case but in general the 

values are quite close. However, this is no longer true for the 0 dB case. Such changes are 

mainly due to the noise impact in the estimated noisy signal power, and to a smaller 

extent to the noise effects in the moment and cumulant estimation process. For example, 

note that CsM exhibits a large deviation from its noise-free value, making the selection 

of the most appropriate feature even more difficult. 

3. Feature Selection 

Based on the results of Table VII-9, an initial selection of the features with the 

most interesting characteristics is made. These features are presented in Table VII-10 

below. 

r 
"S.8.8 

P' 
As.2.2 

P P2 
As.6.5 
P3 

c 
P3 

Separates 2-PSK Separates M-QAM Separates M-QAM Separates 4-FSK Separates 4-PSK 

from all other 4-PSK and 8-PSK 4-PSK and 8-PSK from 8-FSK and 8-PSK, from 

schemes from M-FSK from M-FSK M-QAM 

Separates 2-FSK 

from 4-FSK and 

8-FSK 

Table VII-10. Selection of the most discriminating features for the proposed scheme 
classification. 
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Further testing of the robustness of those features is essential to determine then- 

usefulness in a classification scheme and should include SNR level variations and 

distortions due to fading and multipath. 

a)        Robustness to White Noise 

We first investigated the robustness of features to additive white Gaussian 

noise, i.e., the AWGN propagation model case as described earlier in Chapter III, section 

B, paragraph (a). We considered all modulation types in SNR levels between 0 and 20dB 

with 100 trials per SNR level, and various data length for cumulant and moment 

estimation. Complete results are presented in Appendix E. Figures VII-1 through VII-5 

present the behavior for all selected features as a function of the SNR level for a 15,000 

samples dataset. 
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Figure VII-1. —j- for all modulation schemes; 15,000 samples dataset, 100 trials per 

SNR level. 
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Figure VII-2. —^ for all modulation schemes; 15,000 samples dataset, 100 trials per 

SNR level. 
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Figure VII-3.    5'2"2 for all modulation schemes; 15,000 samples dataset, 100 trials per 

SNR level. 
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Figure VII-4. —^- for all modulation schemes; 15,000 samples dataset, 100 trials per 

SNR level. 
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Figure VII-5.    s'6i
5 for all modulation schemes; 15,000 samples dataset, 100 trials per 

SNR level. 
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Figures VII-1 through VII-5 show the selected features may be used to separate 

all schemes, except M-QAM, down to almost 5dB and in some cases even lower. 

However the AWGN channel is a simplified case that does not take into account fading 

and multipath propagation phenomena. 

b)        Robustness to Fading and Multi-path Environments 

Robustness of the selected features was investigated next by studying their 

behavior when the modulation signal is passed through the various fading and multipath 

propagation models covered in Chapter IE, Sect. B.l-4. The specific impulse responses 

for each propagation channel used in this study are presented in Appendix C (Channels 1 

to 9). These channels cover a variety of different environments, from rural environment 

models with 1 or 2 paths to urban models with more than 3 different propagation paths. 

SNR levels between 0 to 20dB were again considered here, and 100 trials implemented 

per SNR. Complete results are presented in Appendix E. Figures VII-6 through VII-10 

present the behavior for all selected features as a function of the SNR level for a 15,000 

samples dataset. 
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Figure VII-6. —7-for all modulation schemes; 15,000 samples dataset, 100 trials per 

SNR level. 
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Figure VTI-7.    5*3 for all modulation schemes; 15,000 samples dataset, 100 trials per 

SNR level. 
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Figure VII-8.    SX1 for all modulation schemes; 15,000 samples dataset, 100 trials per 

SNR level. 
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Figure VII-9. —^y- for all modulation schemes; 15,000 samples dataset, 100 trials per 

SNR level. 
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Figure VII-10. —j- for all modulation schemes; 15,000 samples dataset, 100 trials per 

SNR level. 

Figures VII-6 through VII-10 reveal the impact of the modeled wireless 

propagation channel on the higher order statistics of the modulation types. Some 

propagation channels (Channels 3 and 7) distort the selected features to such an extent 
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that any attempt to built a classification scheme based on fixed class feature thresholds is 

doomed to fail. 

B.        PROPOSED SCHEME 

Figures VH-1 through VII-10 show that the proposed classification scheme has to 

be flexible to SNR level and propagation channel distortions. With the exception of the 

M-QAM modulations, higher-order statistics may have the power to separate different 

modulations provided one introduces some type of "agile" classification scheme. At this 

point, neural networks seemed a logical approach to the problem because they offer 

flexibility and performance proportional to the quality of the training data set available. 

In addition, neural networks can be a very fast, near real-time, solution to the problem, 

once they are trained. Note that the classification of M-QAM type is still a problem since 

no suitable higher-order statistics can be found to serve as classification features, for the 

varying environments considered. In this case, a combination of blind equalization 

techniques, previously considered by Barbarossa et. al. [BAR00] will be used to identify 

the specific M-QAM type. The proposed method cascades the FSE-CMA equalization 

and the AMA method, previously described in Chapter IV. The complete classification 

scheme is shown in Figure VII-11. 
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1S-QAM   1   256-QAM 
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Figure VII-11. Theoretical classification scheme for 2-FSK, 4-FSK, 8-FSK, 2-PSK, 
4-PSK, 8-PSK, 16-QAM, 64-QAM & 256-QAM modulation types. 

The overall classification scheme consists of five high-order statistic based 

classification blocks that are described next, and one equalization based block. The first 
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five blocks contain basic back-propagation neural network classifiers trained to identify 

all constant modulus signal types: 2-FSK, 4-FSK, 8-FSK, 2-PSK, 4-PSK, 8-PSK, and 

generic M-QAM types. The specific identification of the QAM type (16-QAM, 64-QAM, 

256-QAM) is accomplished via a combination of FSE-CMA and AMA equalization 

methods. Note that the use of the FSE-CMA is essential for the proper initialization of the 

AMA algorithm [BSC98]. 

1.        Neural Network Blocks Implementation 

Conceptually, the proposed classification scheme includes two different 

approaches. The neural network classifiers and the blind equalization classifier. 

Blocks number 0 to 4 in Figure VII-11 are single, two, three or four layer neural 

networks. Each network is trained with a specific feature training sequence, with the 

exception of the second block that is trained with two features simultaneously. The 

number of layers, the activation functions and the number of epochs vary from block to 

block. The choice for the specific characteristics of each network was done empirically 

by trial and error and based on the clarity of the specific feature. Note that more layers 

and more epochs were selected for features more severely distorted from noise or 

propagation channel effects than others. Table VII-11 presents the characteristics for each 

neural network. 
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BLOCKS 

#0 #1 #2 #5 #4 

Inputs l 2 1 1 1 

Classifying 

Feature(s) 

c 
P4 

^5,4.3    "^5,2.2 

P2    '    P 

c 
P3 P3 

r ^5.6.5 

P3 

Layers 2 3 3 4 3 

Arrangement of 

neurons per 8-1 20-8-1 20-10-1 14-4-2-1 20-10-1 

layer 

Activation 'tansig' 'tansig' 'tansig' 'tansig' 'tansig' 

function per 'satlins' 'tansig' 'tansig' 'tansig' 'tansig' 

layer 'purelin 'satlins' 'tansig' 

'purelin' 

'satlins' 

Required epochs 40 40 70 100 40 

Table VII-11. Neural network characteristics for blocks #0 through #4. 

Training data was generated according to the schematic shown in Figure VII-12. 

First, a 15,000 samples sequence was extracted out of the 100,000 samples generated for 

each modulation type, as described in Chapter VII, Sect. A.l. Next, each sequence was 

passed through one out of nine different propagation channels further described in 

Appendix C (channels 1 to 9). These channels were selected to represent a wide variety 
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of propagation situations. They include from single to more than 4-path models that 

correspond to rural, small town or urban propagation conditions. Next, the resulting 

signal sequences were corrupted with additive white Gaussian noise with SNR levels 

between 0 to 20dB. Finally, 100 trials per SNR level were generated. Note that we used 

multiple trials per SNR level to get a sense of the variance in the measurements and 

enhance the network's performance. 

Next, the selected features defined above were estimated for each noisy signal. As 

a result, each dataset was associated with six different feature parameters and each 

feature (or combination of) fed into the appropriate network for training. Figure VII-12 

shows the training dataset creation process. 
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Figure VII-12. Training schematic for the neural network based classification blocks of 
the overall classification scheme. 
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2.        FSE-CMA & AMA Classifier Block Set Implementation 

The purpose of the last block (Block #5) is to differentiate within the QAM 

family, where 16-QAM, 64-QAM and 256-QAM signal types are considered here. These 

modulation types are those most susceptible to noise and fading due to the proximity of 

the associated constellation's centroids, especially for higher order constellations. Recall 

that Table VII-11 showed how similar the higher-order parameters are for QAM 

schemes, thereby making them of little use in classification applications. 

Block #5 consists of two parts. The incoming M-QAM signal is first equalized 

using the FSE-CMA algorithm, as described in Chapter IV, Sect. A. This method is 

proved to be efficient when the equalized constellation is unknown. A 20-tap equalizer is 

chosen and the step size selected to be equal to 0.5 to insure the algorithm is stable. 

The second process in Block #5 is the AMA algorithm described in Chapter IV, 

Sect. B. Following the model of Figure IV-9, three different equalizers banks are created, 

each one matched to one of the three QAM constellations. The parallel model is adopted 

as it speeds up the decision process, although a model with three AMA equalizers in 

series would also work. The processed signal obtained after the FSE-CMA step is 

processed so that all the signal's values lie between -1 and 1 and then passed through the 

three AMA equalizer banks. Each AMA equalizer is matched to a specific QAM type: 

16-QAM, 64-QAM, or 256-QAM. The cost function J(n) given in Equation 4.7 is 

evaluated after converge for each AMA equalizer. Recall that the theoretical cost 

function will be smallest when assigned to the correct constellation type, as described in 
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Chapter IV, Sect. Bl. As a result, the constellation type decision is made by picking that 

which leads to the smallest estimated cost function out of the three computed. 

C.       TESTING PROCESS 

1.        Non Linear Case 

The proposed classification scheme is ready for testing once all neural networks 

are trained. The main program, MAIN_MENU.m, allows the user to either perform a 

testing simulation manually, by selecting the unknown signal, SNR and propagation 

channel, or automate the entire process by considering all modulation types, seven SNR 

levels ranging between 2dB and 20dB, 50 independent trials for each case and 3 out of 

the 6 available testing propagation channels. For every trial, a new random message and 

noise is created to ensure the independence of all results. The 3 propagation channels that 

are chosen for testing are channels 10, 12 and 14 (Figures C-10, C-12 and C-14) and 

represent a rural, a small town and urban propagation environments respectively. 

The automated process creates seven confusion matrices per propagation channel 

(one per SNR level), which are presented in Appendix F. These simulations cover a wide 

spectrum of possible noise and propagation environment combinations. The quantities of 

interest were the overall classifier performance and the performance of the neural- 

network (NN)-only portion of the classification set-up, which only considers the generic 

QAM family but does not subdivide into the three QAM schemes considered here. 

Figures VII-13 to VII-15 show these two quantities for the classification set-up obtained 
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for a rural area propagation model (Figure C-10), a small town propagation model 

(Figure C-12) and an urban propagation model (Figure C-15). Results show the NN-only 

portion of the classifier performs very well down to 1 ldB for all cases. At the same time 

the performance of the complete classifier is steadily lower, especially in low signal to 

noise ratios, revealing the difficulties of M-QAM separation at low SNR levels. 
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Figure VII-13. Classification performances for channel 10 (Figure C-10); 50 trials per 
signal per SNR level. 
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Figure VII-14. Classification performances for channel 12 (Figure C-12); 50 trials per 
signal per SNR level. 
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Figure VII-15. Classification performances for channel 15 (Figure C-15); 50 trials per 
signal per SNR level. 
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As seen from Figures VII-13 to VII-15, the performances are satisfying for all 

tested environments down to 11 dB approximately. Even in the urban channel model 

(Figure C-15) the classifier performs well. This is not surprising since the training of all 

neural network blocks included urban propagation channels (Figures C-3, C-4 and C-7). 

Simulations also showed that block #5 (designed to separate between the various MQAM 

schemes) has a consistently lower performance than the rest of the classifier. Such a 

degradation is due to the fact that the equalization algorithms cannot completely undo 

non-linear channel effects and mitigate the noise effects. As a result, next we considered 

a linear channel case to investigate the sensitivity of the equalization steps to a "better 

behaved" transmission scenario. 

2.        Linear Case 

To investigate the robustness of block #5 to channel distortions, we consider a 

simple linear channel with impulse response h=[0.9,0.1,0.4] to train the previous network 

in SNR levels between 2 and 20dB. Next, the network is tested for data transmitted 

through another linear channel with impulse response c=[l,0,0.5]. As before, 100 trials 

per SNR level are selected for training, while 50 trials are generated for testing, resulting 

in seven confusion matrixes (one for each SNR level). Average classification 

performances are shown in Figure VII-16 and the confusion matrixes included in 

Appendix F. 
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Figure VII-16. Classification performances for network trained on linear channel 
c=[l,0,0.5]; 50 trials per signal per SNR level. 

Figure VII-16 illustrates the fact that the equalization-based classification portion 

performs better in medium to high SNR levels when channel distortions are linear, as 

expected. 
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VIII.   CONCLUSIONS 

Classifying modulation types has been studied extensively over the last decade as 

applications arise in numerous different areas. However, few published works deal with 

real-world propagation models. This study considered the classification of various M- 

PSK, M-FSK, and M-QAM modulation types under unfavorable propagation conditions 

and additive white Gaussian noise distortions. We first reviewed the literature in the 

general area of modulation classification. Initial work indicated that higher-order statistic 

parameters could be selected to differentiate between all digital modulation types 

considered in this study when dealing with ideal transmission conditions. However, 

initial work also showed that these class features were no longer useful in differentiating 

between specific QAM types when the signals had been distorted by multipath 

environments. 

As a result, a hierarchical classification scheme based on neural network decision 

nodes was adopted to separate all modulation types, except specific M-QAM types. 

Classification of various M-QAM types was obtained by a combination of two 

equalization schemes: the CMA-FSE and the AMA algorithms. While the CMA-FSE is a 

blind equalization scheme, the AMA takes advantage of the specific M-QAM 

constellation structure of the QAM types considered. Such a two-step process was 

motivated by the high sensitivity of QAM modulation types to channel distortions, and 

the inability of higher-order statistics to separate within the M-QAM family for medium 

and low SNR levels. 
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We investigated classification performances for the overall classification scheme 

in various types of propagation channels (rural, small town and urban) and SNR levels. 

Results show the classifier performs well for all modulation types considered, but break 

down fast as the SNR level goes down for M-QAM modulation types. However, such a 

result was expected as M-QAM modulation types, especially those of high order, are 

extremely sensitive to noise and multipath fading situations. 

Note that classification performances are directly related to how well the network 

gets trained, and that better training may be obtained by including a wider range of 

propagation models and SNR ranges. In addition, note that that the overall classification 

process considered in this work does not take into account any a-priori knowledge of the 

propagation environment. However, some type of propagation channel information, such 

as the general type of channel (i.e., rural or urban areas), may be available in some 

situations. Incorporating a-priori information will lead to a "better" training of the neural 

network with data selected for the specific environment of interest, resulting in improved 

performances. 

Finally, this study did not take into account pulse shaping issues. However in 

practical situations, pulse shaping is commonly used prior to transmission. Adding pulse 

shaping and investigating the resulting effects on overall classification performances is 

left for further study. 
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APPENDIX A. AMA COST FUNCTION GRADIENT DERIVATION 

Recall from Chapter IV that the output to the AMA equalizer is given by: 

L-\ 

z(/i) = X^W'^-/), (A1) 

1=0 

where h is the L-tap FIR equalizer weight vector at sample n, given by: 

h = [K,..A-rl (A-2) 

and 5 is a portion of the input signal with length equal to the length of the filter 

equalizer: 

s_ = [s(n),s("-l),-s("-L)]. (A3) 

Therefore, Equation (A.l) for the n* sample may be re-written in vector form as 

follows: 

z = hT • S. (A.4) 
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Recall the AMA cost function for the nth sample is given by (Chapter IV, equation 

4.7): 

Jk=E 
■N|2 

i-Z' 
M     -\z-ck(')\ 

'2c- 

i=l 

(A.5) 

where M represents the total number of centroids for the k01 constellation, ck(i) is 

the iA centroid of the kth constellation, and a is a constant chosen so that: 

^(0172^ a   v/*i. (A.6) 

The gradient of the cost function (equation A.5) is then: 

M     -\l-ck(if/ 

dEh-^e        ^ 

v^=- 

M 

dz 

( \* -\hT
£-ck(i~\- 

'l<r 

cfe=a(l) dz   A 
"3A" 9z "9Ä   tr 

-2[Är£-ct(z)r 9^1 

8 e           Ar 

9z 

2(T2 9A 

-JAr£-e*('')|2 

fe-^(0r   „r 

3z 

9A 
^=> 

(A.7) 
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APPENDIX B. DERIVATION OF MOMENT EXPRESSIONS FOR UP TO 8TH 

ORDER 

Recall that the auto-moment for a sequence sk was defined earlier in Chapter V 

as: 

E,^,=E[s>(sy], (B.l) 

where, p and q respectively represent the number of the non conjugated and 

conjugated terms, respectively, and p+q is the moment order. 

Consider a zero-mean sequence of the form sk = ak + j ■ bk. For M-QAM signal 

types, ak and bk are independent, and as a result, the auto-moments are purely real 

[MAR98, p. 169, equation B.13]. For M-FSK and M-PSK types this result does not hold, 

as real and imaginary sequences akand bk are not independent. However, Marchand 

showed that for constant modulus signals such as M-FSK and M-PSK types, all moments 

are either zero (for odd order moments) or non-zero real quantities [MAR98, p. 175, 

equation B.51-B.53]. Therefore, expressions for the auto-moments of modulations M- 

QAM, M-FSK and M-PSK can be derived easily, by applying equation (B.l) toskfor 

various orders/? and q and keeping the real part only. Results are shown next. 
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1. Second order moments 

• ES22=E[s2(Sy] = E[(a+jbf]: 

ESX2=E[(a2-b2)] 

* ES2A=E[sl(s')l] = E[(a + jb)(a-jb)]^ 

Es,2A=E[(a2 + b2)] 

Fourth order moments 

* ESM =E[s\Sy]=E[(a+jby]=El(a+jbf(a+jbf]=> 

ESM =E[a4 +4a'bj+4ab3j+6a2b2j2 +jb4]=E[a4+b4-6a2b2] 

* E5A3 = E[s3s'] = E[(a + jb)3(a-jb)]=> 

ESA3 = E[(a3 + 3a2bj + 3ab2j + b3f)(a - jb)] => 

15.4.3 Es 4 3 = E[a4 + 2a3bj - 3ab3j - ab3 j -b4] = E[a4 - b4] 

* ESAy2=E[s2(s')2] = E[(a + jb)2(a-jb)2]=> 

ESA2 = E[{a2 -b2+ 2abj)(a2 + b2 - 2abj)] => 

ESAi = E[a4 + b4- 2a2b2j2] = E[a4 + b4 + 2a2b2] 

3.        Sixth order moments 

• ESA6 =E[S
6(sy]=E[(a+jb)6]=E[(a+jb)\a+jbf]^ 

ESA6 =E[(a3 +3a2bj+3ab2f +b3f)(ai +3a2bj+3ab2f +b3f)] => 

£5,6,6 =£[(«3 +3a2bj-3ab2-b3j)(a3 +3a2bj-3ab2-b3j)] => 

ES66 =E[a6 +6a5bj-6a4b2 -20aib3j+9a4b2j2 -6a2b4f +9a2b4 +6ab5j+b6j2]- J5,6,6 

ES66 =E[a6-b6 +I5a2b4-I5a4b2] 
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ESM = E[s5s'] = E[(a+jb)5(a-jb)]^ 

ESAS =E[(a5 +5a4bj+l0a'b2f +I0a2b3f+5ab4j4 + b5j5)(a-bj)] => 

£5,6,5 = E[a6 +4a5bj+5a4b2f -5a2b4j4-4ab5/ - b6/] => 

£5.6.5 = E[a6-5aAb2 -5a2b4+b6] 

*    ESM = E[s4(s*f] = E[(a + jb)4{a-jbf}=> 

ESM = £[a4 + 4a3bj + 6a2b2f + 4atff + b4j4)(a2 - lab] - b2)] => 

ESM = E[a6 + 2c? bj - a4b2j2 - 4aWf - a2b4f + lab'f + b6/ ] => 

ES64=E[a6 +a4b2 -a2b4 -b6] 

Es^=E[s3(Sy] = E[(a+jbf(a-jb)3]=> 

£5.6.3 = E[c? + 3a2bj + 3ab2j2 + b3f)(a3 - 3a2bj + 3ab2j2 - b3j3)] => 

£5.6, = E[°6 ~ 3a4b2j2 + 3a2b4f - b6/] => 

ES63=E[a6+3a4b2+3a2b4+b6] 

4.        Eighth order moments 

Esss=E[s\Sy]=E[(a+jbf]=> 

ESM =£Itf8 +Sa7bj+2Sa6b2f +56asb3f +70a4b4j4 +56aib5f +28a1b6j6 +8ab7f+b*f] -. 

ESM =E[a* -28a6b2 +70a4b4 -28c?b6+bs] 

Es$1=E[s7s]=E[(a+jb)7{a-jb))=> 

ESSSJ=E[a7+7aibj + 21a5b2j2+35a4b3f +35a3b4f +2\a1b5f + 7ab6/ +b7f)(a-jb)]=> 

Es,SJ=^as+6a7bj + 14a6b2j2+l4aVf-l4a3b5/-l4a2b6j6-6ab7f-bsf]^ 

ESM = E[a*-14a6b2+14a2b6-bs] 

ESXA=E[s\s'f} = E[(a+jb)\a-jb)2}=> 

Ess.* =E[(a'+6a5bj+\5a4b2j2 +20a3b3f + l5a2b4/ +6abif+b6f){a2 -2abj+b2j2)] => 

Esu = E[ai+4a7bj+4a('b2j2-4a5b3j3-\0a4b4j4 -4a3b5f +4a2b6f +4ab7f +b%f] => 

£■5.8.5 =E[a% -4a%2-\0a4b4 -4a2b6 +b%] 
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Es^=E[s5(s'f]=E[(a+jb)5(a-jbf}=> 

£SA5 =E[(a5 +5a*bj+10ctb2f +\0a2blf +5ab*f +b5/\a3 -3a2bj+3ab2f -b3f)]=> 

Essi =E[a*+2a7bj-2a6b2f -6aVf +6a3b5/+2a2b6/ -lab1]1 -68/)]=> 

Ess< =E[a* +2a6b2 -täb6 -b"] 

ESM = E[s\Sy] = E[(a + jb)\a - jb)4]=> 

ESM = E[(a4 + Aa'bj + 6a2b2f + Aab'f + b*f )(a4 - Aa'bj + 6a2b2f - Aab'f + b*f)] -. 

ESM = E[a% - AaWj2 + 60 V/ - 4a V/ + b*f ] => 

ESM = E[a% + 4a662 + 6a* b4 + Aa2b6 + b%] 
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APPENDIX C. PROPAGATION CHANNELS IMPULSE RESPONSES 

One of the goals of the study was to simulate situations as close to reality as 

possible. For this reason, data taken from real world measurements were used, as opposed 

to artificial channel models [MPROO]. These impulse responses represent various 

wireless propagation channels, from mild fading to severe multipath fading situations. 

Figures C-l to C-9 show the impulse responses of the channels used for the neural 

network training described in Chapter VII. Figures C-10 to C-l5 show the impulse 

responses of the channels that are used during the testing phase of the overall 

classification scheme. All plots present the absolute value of the impulse responses in dB. 

One thing that worth noting is the similarity of some of these real world channels with the 

theoretical Rayleigh fading envelope presented in Figure III-4. However, note that there 

are cases where the real channels are much worse than those described by the Rayleigh 

fading model (Figures C-l4 and C-l5). 

105 



Figure C-l. Propagation channel #1. 

Figure C-2. Propagation channel #2. 
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Figure C-4. Propagation channel #4. 
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Figure C-5. Propagation channel #5. 
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Figure C-6. Propagation channel #6. 
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Figure C-8. Propagation channel #8. 

109 



2iS -fcß 
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Figure C-10. Propagation channel #10. 
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Figure C-12. Propagation channel #12. 
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Figure C-13. Propagation channel #13. 

Figure C-14. Propagation channel #14. 
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Figure C-15. Propagation channel #15. 
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APPENDIX D. MATLAB MAIN PROGRAM AND FUNCTIONS 

S-********************************************************************** 

% MAIN_MENU.m 
%       -Main control program 

% Use: 
scheme 

This orogram is the user interface to the classification 

% Input: None 

Returns: None 

% 21 January 2 001 
% LtJg George Katzichristos Hellenic Navy 
?-******** ************************************************** ************ 

clc;clear all 
disp ( ***********    y,   2 JJ u   *************** i) 

disp( ') 
disp( [1] Create new signals for training    ') 
disp ( [2] Create training features fot the NNs ') 
disp ( [3] Train networks with excisting data ') 
disp ( [4] Start testing process  (automated) ') 
disp( [5] Test a signal manually  (suggested....)     ') 
disp(' ') 
choice=input('Give your choice:  ') 
switch chc ice 
case 1, 

disp(' ') 
samples =input (' How many samples? ') 
CREATE_ SIGNALS(samples) 

case 2, 
create_ moments_for_NN(dummy); 

case 3, 
train_NNs(0) 

case 4, 
auto_re suits(10) 

case 5, 
disp( WHAT SIGNAL DO YOU WANT AS THE TESTING SIGNAL ?? 
disp( ') 
disp ( [1] 2-FSK          [5] 8-PSK') 
disp( [2] 4-ESK          [7] 16-QAM') 
disp( [3] 8-FSK          [8] 64-QAM') 
disp( [4] 2-PSK          [9] 256-QAM') 
disp( [5] 4-PSK                    ') 
die P( ') 
choice_signal=input('Give your choice  ') 
clc 
choice_snr=input('Give the desired SNR in dB  ') 
dispC ') 
choice_channel=input('Which propagation model  do you want   [10-15]? 
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disp ( '    ') 
flag=classifier(choice_signal,choice_channel,choice_snr); 
disp('The SNR was') 
choice_snr 
disp (' The channel was ') 
choice_channel 

end 
% ENDOFFUNCTION 

function flag_storage=classifier(choice_signal,choice_channel,snr_db) 
%*****************************************************************•***** 
% Function 
%  - IMPLEMENTATION OF TEE CLASSIFICATION TREE, BLOCK BY BLOCK 

% Use: flag_storage=c!assifier(choice_signal,choice_channel,snr_db) 
Q, 
"O 

% Input:   choice_signal-> Allowed values 1...9 correspond to the 
desired unknown signal 
% to be classified 
% choice_channel->Allowed values 10...15 correspond to the 
desired propagation channel 
% that the unknown signal will be pased 
through 
% snr_db-> The desired signal to noise ratio in db 

% Returns:  flag_storage-> A code-value from 1...9 depending the 
classifier outcome 
o 

% 21 January 2 001 
% LtJg George Hatzichristos Hellenic Navy 
%*********•********•********•*******•***************************+****** 

clc 
flag_storage=0; 
% Load the trained NNs for blocks 0-4 from workspace 
load trained_NNs; 
flag2=0; 
S=0; 
flag=l; 
% Create fresh signals 
CREATE_SIGNALS(30000); 
% Lead clear modulations from workspace 
load testing_signals 
y_2fsk=FSK_signals(:,1) 
y_4fsk=FSK_signals(:,2) 
y_8fsk=FSK_signals(:,3) 
y_2psk=PSK_signals(:,1) 
y_4psk=PSK_signals(:,2) 
y_8psk=PSK_signals(:,3) 
y_16gam=QAM_signals(:,1); 
y_64qam=QAM_signals(:,2); 
y_256qam=QAM_signals(:,3); 
samples_to_keep=length(y_2fsk); 
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blockl_input= []; 
block2_input= []; 
block3_input= []; 
block3_input_l= [] ; 
block3_input_2=[]; 
block4_input=[]; 
% Assign the chosen signal value to the corresponding modulation 
switch choice_signal 
case 1, 

x_signal=y_2fsk; 
case 2, 

x_signal=y_4fsk; 
case 3, 

x_signal=y_8fsk; 
case 4, 

x_signal=y_2psk; 
case 5, 

x_s igna1=y_4psk; 
case 6 

x_signal=y_8psk; 
case 7, 

x_signal=y_16qam; 
case 8, 

x_signal=y_64qam; 
case 9, 

x_signal=y_256qam; 
end 
% Assign the chosen channel value to the corresponding channel that is 
saved in the workspace 
switch choice_channel 
case 10, 

load chanlO; 
case 11, 

load chanll; 
case 12; 

load chanl2; 
case 13, 

load chanl3; 
case 14, 

load chanl4; 
case 15, 

load chanl5 
end 
% Pass the unknown modulatin from the chosen propagation channel 

x_signal=filter (C, l,x_signal) ,• 
% Convert dB into a number 
snr=10Ä(snr_db/10); 
% Add white noise 
[x_signal]=addAWGN(x_signal,snr); 

% Subtruct the mean and normalized the noised signal 
x_signal=x_signal-mean(x_signal); 
x_signal_energy=(l/samples_to_keep)*norm(x_signal,2) *~2; 
s-****************  ****************** 
% * * *  start the hierarchical tree  * * * 
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BLOCK 

% Estimate the cumulant C88 
mom22_x_signal=real(mom2x(x_signal,0)) 
mom21_x_signal=real(mom2x(x_signal,1)) 
mom44_x_signal=real(mom4x(x_signal,0)) 
mom43_x_signal=real(mom4x(x_signal,1)) 
mom42_x_signal=realCmom4x(x_signal,2)) 
mom88_x_signal=real(mom8x(x_signal,0)) 
mom84_x_signal=real(mom8x(x_signal,1)) 
criterion=cum88_module(mom88_x_signal,mom44_x_signal,mom22_x_signal,mom 
84_x_signal, 
mom42_x_signal,mom43_x_signal,mom21_x_signal,x_signal_energy); 
% Test the network 
Y = sim(net_0,criterion); 
% Decide on the output 
if Y<=0 

disp('we have 2 -PSK') 
flag_storage=4; 
flag=10; 

elseif Y>0 
disp('we have 4-PSK or 8-PSK or M-FSK or M-QAM') 
flag=l; 

end 
**************** ****************** 

% BLOCK #1 
if flag==l 
count=0;chop=3000;flag3 = 0;blockl_input_l= [];blockl_input_2=[];blockl_in 
put=[] ; 

criterionl=real(mom4x(x_signal,1)); 
criterionl=criterionl/x_signal_energy^2; 
criterion2=real(mom2x(x_signal,0) ) ; 
criterion2=criterion2/x_signal_energy; 
blockl_input_l= [blockl_input_l,-criterionl] ; 
blockl_input_2=[blockl_input_2;criterion2]; 
blockl_input=[blockl_input_l blockl_input_2]'; 
% Test the network 
Y = sim(net_l,blockl_input) 
% Decide on the output 
if Y>=0.20 

flag=l; 
disp('We have M-FSK') 

elseif Y<=-0.20 
disp('We have M-FSK') 
flag=l; 

else 
disp('We have 4-PSK, or 8-PSK or M-QAM') 
flag=0; 

end 
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end 
s.****************  ****** 
% 3LOCK 
if flag==l 

count=0; 
mom65_x_signal=real(mom6x(x_signal)); 
mom22_x_signal=real(mom2x(x_signal,0)) 
mom43_x_signal=real(mom4x(x_signal,1)) 
mom21_x_signal=real(mom2x(x_signal,1)) 
mom44_x_signal=real(mom4x(x_signal,0)) 

criterion=cum65_module(mom65_x_signal,mom44_x_signal,mom43_x_signal,mom 
22_x_signal,mom21_x_signal,x_signal_energy); 

% Test the network 
Y=sim(net_2,criterion) 
% Decide on the output 

if Y<=0.3 
dispCwe have 2-FSK') 
flag_storage=l; 
flag=10; 

elseif Y>0.3; 
disp('we have 4-FSK or 8-FSK') 
flag=2; 

end 
2-****************   ****************** 

% BLOCK #3 
if flag==2 

mom65_x_signal=real(mom6x(x_signal)); 
criterion=mom65_x_signal/x_signal_energyA3; 
% Test the network 
Y=sim(net_3,criterion) 
% Decide on the output 
if Y>0 

disp('we have 4-FSK') 
flag_storage=2; 
flag=10; 

else 
disp('we have 6-FSK') 
flag_storage=3; 
flag=10; 

end 
end 
end 
s-****************  ****************** 
% BLOCK #4 
if flag==0 

mom65_x_signal=real(mom6x(x_signal)); 
mom22_x_signal=real(mom2x(x_signal,0)) 
mom43_x_signal=real(mom4x(x_signal,1)) 
mom21_x_signal=real(mom2x(x_signal,1)) 
mom44_x_signal=real(mom4x(x_signal,0)) 

criterion=cum65_module(mom65_x_signal,mom44_x_signal, tnom43_x_signal,mom 
22_x_signal,mom21_x_signal,x_signal_energy); 

% Test the network 
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Y=sim(net_4,criterion) 
% Decide on the output 
if Y>=0.3 

flag_storage=6; 
flag=10; 
disp('We have 8-PSK') 

elseif Y<=-0.3 
f.lag=0; 
disp ('We have M-QAM') 

else 
disp('We have 4-PSK') 
flag_storage=5,- 
flag=10; 

end 
end 
s-****************  ****************** 
% BLOCK #5 
if flag==0 

% Call the AMA function to separate the M-QAMs 
[flag_storage,CF1,CF2,CF3,final_l,final_2,final_3]=ama_function(x_signa 
1); 

if flag_storage==100 
% If AMA cannot make a decision, call it cnce more 

[flag_storage,CFl,CF2,CF3,final_l,final_2,final_3]=ama_function(x_signa 
1); 

end 
end 
return 
% END     OFF  UNCTION 

function auto_results(choice_channel) 
s-********************************************************************** 
% Function 
%  - RUNS AUTOMATICALLY THE CLASSIFICATION TREE FOR DIFFERENT 
3NRS,TRIALS AND 
%    PROPAGATION CHANNELS 

% Use: auto_results(dummy) 
'S 

% Input:    dummy-> A dummy variable 

% Returns:  The confusion matrixes of all simulations. 

% 21 January 2001 
% LtJg George Hatzichristos Hellenic Navy 
s-**** ******************************************************* *********** 

clear all; 
% Declaration of confusion matrixes 
confusion= [] ; 
confusion_cascade=[] ; 
% CHOICE OF THE PROPAGATION SIGNAL 
e. ***************** 
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choice_channel=10; 
% ***************** 
% Declaration of the simulation SNRs and trials 
snrdb=[20 17 14 11 8 5 2]; 
trials=50; 
% First loop is for the different SNRs 
for count=l:7 

snr_db=snrdb(count); 
% Second loop is for the different types of modulations 
for choice_signal=l:9 

vector=zeros(trials,9); 
% Third loop is for ehe different trials 
for trial_count=l:trials 

flag_storage=classifier(choice_signal,choice_channel,snr_db) 
if flag_storage==100 

flag_storage=8; 
elseif flag_storage==101 

flag_storage=7; 
elseif flag_storage==102 

flag_storage=7; 
end 
vector(trial_count,flag_storage)=1; 

end 
row_vector=sum(vector); 
confusion=[confusion;row_vector]; 

end 
confusion_cascade(:,:,count)=confusion; 
confusion=[]; 

save temporary_results_channel_10 confusion_cascade count choice_signal 
trial_count; 
end 
% Save the confusion matrixes into the workspace 
save results_channel_10 confusion_cascade 
return 
% END  OFF UNCTION 

function create_moments_for_NN(dummy); 

%********************************************************************** 
% Function 
%  - Creates the training data-sen for the NNs of blocks 0 to 4 
o, 
o 

%  Use: create_moments_for_NN(dummy) 
% 
% Input:   None 
o, ' 

% Returns:  The training dataset is saved to workspace 

% 21 January 2 001 
% LtJg George Hatzichristos Hellenic Navy 
%********************************************************************** 
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%  Load the  clean signals 
load testing_signals 
samples_to_keep=length(FSK_signals); 
%  Initialization of  function's  internal variables 
SUM__mom43= [] ;SUM_mom65= [] ;SUM_cum65= [] ;SUM_cur= [] ;SUM_mom44= [] ; SUM_mom8 
6=[] ;SUM_mom42=[] ; 
SUM_cum44=[];SUM_cum88= [];SUM_mom22= [];SUM_snr=[];SUM_cum84=[];SUM_mom8 
4= [] ; 
FSK_signals=FSK_signals(1:samples_to_keep,:) 
PSK_signals=PSK_signals(l:samples_to_keep,:) 
QAM_signals=QAM_signals(l:samples_to_keep,:) 
% The first loop is for the different channels 
for loop3=2:10 

snr_db=20; 
% The second loop is for the different SNRs 

for loopl=l:20 
% Define the desired SNR 
snr_db=snr_db-l; 
snr=10A(snr_db/10); 

% The third loop is for the number of samples per snr 
for loop2=l:10 

y_2fsk=FSK_signals(:,1) 
y_4fsk=FSK_signals(:,2) 
y_8fsk=FSK_signals(: , 3) 
y_2psk=PSK_signals(: , 1) 
y_4psk=PSK_signals(:,2) 
y_8psk=PSK_signals(:,3) 
y_16gam=QAM_signals(:,1); 
y_64gam=QAM_signals(:,2); 
y_256gam=QAM_signals(:,3); 
if  loop3==2 

load chanl 
y_2fsk=filter(C,l,y_2fsk) 
y_4fsk=filter(C,l,y_4fsk) 
y_8fsk=filter(C,l,y_8fsk) 
y_2psk=filter(C,1,y_2psk) 
y_4psk=filter(C,l,y_4psk) 
y_8psk=filter(C,1,y_8psk) 
y_16gam=filter(C/l,y_16gam); 
y_64gam=filter(C,l,y_64gam); 
y_256gam=filter(C,l,y_256gam); 

elseif loop3==3 
load chan2 
y_2fsk=filter(C,1,y_2fsk) 
y_4fsk=filter(C,1,y_4fsk) 
y_8fsk=filter(C,1,y_8fsk) 
y_2psk=filter(C,l,y_2psk) 
y_4psk=filter(C,l,y_4psk) 
y_8psk=filter(C,l,y_8psk) 
y_16gam=filter(C,l,y_16gam); 
y_64gam=filter(C,l,y_64gam); 
y_256gam=filter(C,l,y_256gam); 

elseif loop3==4 
load chan3 
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y_2fsk=filter(C,l,y_2fsk) 
y_4fsk=filter(C,l,y_4fsk) 
y_8fsk=filter(C,l,y_8fsk) 
y_2psk=filter(C,1,y_2psk) 
y_4psk=filter(C,l,y_4psk) 
y_8psk=filter(C,l,y_8psk) 
y_16qam=filter(C,l,y_16gam); 
y_64gam=filter(C,l,y_64gam); 
y_256qam=filter(C,l,y_256qam); 

elseif loop3==5 
load chan4 
y_2fsk=filter(C,l,y_2fsk) 
y_4fsk=filter(C,l,y_4fsk) 
y_8fsk=filter(C,l,y_8fsk) 
y_2psk=filter(C,l,y_2psk) 
y_4psk=filter(C,l,y_4psk) 
y_8psk=filter(C,l,y_8psk) 
y_16qam=filter(C,l,y_16qam); 
y_64qam=filter(C,l,y_64qam); 
y_256qam=filter(C,l,y_256qam); 

elseif loop3==6 
load chan5 
y_2fsk=filter(C,l,y_2fsk) 
y_4fsk=filter(0,1,y_4fsk) 
y_8fsk=filter(C,l,y_8fsk) 
y_2psk=filter(C,l,y_2psk) 
y_4psk=filter(C,l,y_4psk) 
y_8psk=filter(C,l,y_8psk) 
y_16qam=filter(C,l,y_16qam); 
y_64qam=filter(C,l,y_64qam); 
y_256qam=filter(C,l,y_256qam); 

elseif loop3==7 
load chan6 
y_2fsk=filter(C,l,y_2fsk) 
y_4fsk=filter(C,l,y_4fsk) 
y_8fsk=filter(C,l,y_8fsk) 
y_2psk=filter(C,1,y_2psk) 
y_4psk=filter(C,l,y_4psk) 
y_8psk=filter(C,l,y_8psk) 
y_16qam=filter(C,l,y_16qam); 
y_64qam=filter(C,l,y_64qam); 
y_256qam=filter(C,l,y_256qam); 

elseif loop3==8 
load chan7 
y_2fsk=filter(C,l,y_2fsk) 
y_4fsk=filter(C,l,y_4fsk) 
y_8fsk=filter(C,l/y_8fsk) 
y_2psk=filter(C,l,y_2psk) 
y_4psk=filter(C,l,y_4psk) 
y_8psk=filter(C,l,y_8psk) 
y_16qam=filter(C,l,y_16qam); 
y_64qam=filter(C,l,y_64qam); 
y_256qam=filter(C,l,y_256qam); 

elseif loop3==9 
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load chan8 
y_2fsk=filter(C,l,y_2fsk); 
y_4fsk=filter(C,l,y_4fsk); 
y_8fsk=filter(C,l,y_8fsk); 
y_2psk=filter(C,l,y_2psk); 
y_4psk=filter(C,l,y_4psk); 
y_8psk=filter(C,l,y_8psk); 
y_16gam=filter(C,l,y_16gam); 
y_64qam=filter(C,l,y_64gam); 
y_256gam=filter(C,l,y_256gam); 
elseif loop3==10 
load chan9 
y_2fsk=filter(C,l,y_2fsk); 
y_4fsk=filter(C,l,y_4fsk); 
y_8fsk=filter(C,l,y_8fsk); 
y_2psk=filter(C,l,y_2psk); 
y_4psk=filter(C/l,y_4psk); 
y_8psk=filter(C,l,y_8psk); 
y_16gam=f ilter (C, l,y_16gam) ,- 
y_64gam=filter(C,l,y_64qam),- 
y_256gam=filter(C,l,y_256gam); 
end 
% Add white noise  to  form various  SNRs 

[y_2fsk]=addAWGN(y_2fsk,snr); 
[y_4fsk]=addAWGN(y_4fsk,snr); 
[y_8fsk]=addAWGN(y_8fsk,snr); 
[y_2psk]=addAWGN(y_2psk,snr); 
[y_4psk]=addAWGN(y_4psk,snr); 
[y_8psk]=addAWGN(y_8psk,snr); 
[y_16gam]=addAWGN(y_16qam,snr); 
[y_64gam]=addAWGN(y_64gam,snr); 
[y_256gam]=addAWGN(y_256gam,snr); 

% Find the kurtosis of all signals 
cur_2fsk=kurtosis(y_2fsk); 
cur_4fsk=kurtosis(y_4fsk); 
cur_8fsk=kurtosis(y_8fsk); 
cur_2psk=kurtosis(y_2psk); 
cur_4psk=kurtosis(y_4psk); 
cur_8psk=kurtosis(y_8psk); 
cur_16gam=kurtosis(y_16gam); 
cur_64gam=kurtosis(y_64gam); 
cur_256gam=kurtosis(y_256gam); 
acur=[cur_2fsk cur_4fsk cur_8fsk cur_2psk cur_4psk cur_8psk cur_16gam 
cur_64qam cur_256gam]; 
SUM_cur=[SUM_cur;acur]; 
acur= [] ; 
SUM_snr= [SUM_snr,-snr_db] ; 
%  Siibtract   the mean of  all  signals 
y_2psk=y_2psk-mean(y_2psk) 
y_4psk=y_4psk-mean(y_4psk) 
y_8psk=y_8psk-mean(y_8psk) 
y_2fsk=y_2fsk-mean(y_2fsk) 
y_4fsk=y_4fsk-mean(y_4fsk) 
y_8fsk=y_8fsk-mean(y_8fsk) 
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y_16qam=y_16qam-mean(y_16qam); 
y_64qam=y_64qam-mean(y_64qam); 
y_256qam=y_256qam-mean(y_256qam); 
% Find the energy of all signals 
y_2psk_energy=(l/samples_to_keep)*norm(y_2psk,2)A2; 
y_4psk_energy=(l/samples_to_keep)*norm(y_4psk,2)^2; 
y_8psk_energy=(l/samples_to_keep)*norm(y_8psk,2)A2; 
y_2fsk_energy=(l/samples_to_keep)*norm(y_2fsk,2)^2; 
y_4fsk_energy=(l/samples_to_keep)*norm(y_4fsk,2)Ä2; 
y_8fsk_energy=(l/samples_to_keep)*norm(y_8fsk,2)*2; 
y_16qam_energy=(l/samples_to_keep)*norm(y_16qam,2)^2; 
y_64qam_energy=(l/samples_to_keep)*norm(y_64qam,2)^2; 
y_256qam_energy= (l/samples_to_keep) *norm(y_256qam, 2) "2-, 
% Evaluate all the higher order statistics 
mom43_y_2fsk =real(mom4x( y_2fsk,l)); 
mom43_y_2fsk_n=mom43_y_2fsk/ y_2fsk_energyA2; 
mom43_y_4fsk =real(mom4x( y_4fsk,1)); 
mom43_y_4fsk_n=mom43_y_4fsk/ y_4fsk_energy*2; 
mom43_y_8fsk =real(mom4x( y_8fsk,l)); 
mom43_y_8fsk_n=mom43_y_8fsk/ y_8fsk_energyA2; 
mom43_y_2psk =real(mom4x( y_2psk,1)); 
mom43_y_2psk_n=mom43_y_2psk/ y_2psk_energy^2; 
mom43_y_4psk =real(mom4x( y_4psk,l)); 
mom43_y_4psk_n=mom43_y_4psk/ y_4psk_energy*2; 
mom43_y_8psk =real(mom4x( y_8psk,l)); 
mom43_y_8psk_n=mom43_y_8psk/ y_8psk_energy^2; 
mom43_y_16qam =real(mom4x( y_16qam,1)); 
mom43_y_16qam_n=mom43_y_16qam/ y_16qam_energyA2,- 
mom43_y_64qam =real(mom4x( y_64qam,1)); 
mom43_y_64qam_n=mom43_y_64qam/ y_64qam_energy*2; 
mom43_y_256qam =real(mom4x( y_256qam,1)); 
mom43_y_256qam_n=mom43_y_256qam/ y_256qam_energyÄ2; 
a43=[mom43_y_2fsk_n mom43_y_4fsk_n mom43_y_8fsk_n mom43_y_2psk_n 
mom43_y_4psk_n mom43_y_8psk_n mom43_y_16qam_n mom43_y_S4qam_n 
mom43_y_256qam_n] ; 
SUM_mom43=[SUM_mom43;a43] ; 
a43=[] ; 
%   MOK42 
mom42_y_2fsk =real(mom4x( y_2fsk,2)); 
mom42_y_2fsk_n=mom42_y_2fsk/ y_2fsk_energy^2; 
mom42_y_4fsk =real(mom4x( y_4fsk,2)); 
mom42_y_4fsk_n=mom42_y_4fsk/ y_4fsk_energy^2; 
mom42_y_8fsk =real(mom4x( y_8fsk,2)); 
mom4 2_y_8 f sk_n=mom4 2_y_8 f sk/ y_8 f sk_energyA 2,- 
mom42_y_2psk =real(mom4x( y_2psk,2)); 
mom42_y_2psk_n=mom42_y_2psk/ y_2psk_energy*2; 
mom42_y_4psk =real(mom4x( y_4psk,2)); 
mom42_y_4psk_n=mom42_y_4psk/ y_4psk_energy*2; 
mom42_y_8psk =real(mom4x( y_8psk,2)); 
mom42_y_8psk_n=mom42_y_8psk/ y_8psk_energy*2; 
mom42_y_16qam =real(mom4x( y_16qam,2)); 
mom42_y_16qam_n=mom42_y_16qam/ y_16qam_energy^2; 
mom42_y_64qam =real(mom4x( y_64qam,2)); 
mom42_y_64qam_n=mom42_y_64qam/ y_64qam_energy^2; 
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mom42_y_256qam =real(mom4x( y_256gam,2)),- 
mom42_y_256gam_n=mom42_y_256qam/ y_256qam_energyA2; 
a42=[mom42_y_2fsk_n mom42_y_4fsk_n mom42_y_8fsk_n mom42_y_2psk_n 
mom42_y_4psk_n mom42_y_8psk_n mom42_y_16qam_n mom42_y_64qam_n 
mom42_y_256qam_n]; 
SUM_mom4 2 =[SUM_mom4 2;a4 2] ; 
a42=[] ; 
%MOM65 
mom65_y_2fsk =real(mom6x ( y_2fsk)); 
mom6 5_y_2 f sk_n=mom6 5_y_2 f sk/y_2 f s k_energyA 3; 
mom65_y_4fsk =real(mom6x( y_4fsk)); 
mom65_y_4fsk_n=mom65_y_4fsk/y_4fsk_energyx3; 
mom65_y_8fsk =real(mom6x( y_8fsk)); 
mom6 5_y_8 fsk_n=mom6 5_y_8 fsk/y_8 f sk_energyA 3; 
mom65_y_2psk =real(mom6x( y_2psk)); 
mom65_y_2psk_n=mom65_y_2psk/y_2psk_energyA3; 
mom65_y_4psk =real(mom6x( y_4psk)); 
mom65_y_4psk_n=mom65_y_4psk/y_4psk_energy*3; 
mom65_y_8psk =real (mom6x ( y_8psk)) ,- 
mom65_y_8psk_n=mom65_y_8psk/y_8psk_energy*3; 
mom65_y_16qam =real(mom6x( y_16qam)); 
mom6 5_y_l6 qam_n=mom6 5_y_l6 qam/y_l6 qam_ene rgy*3; 
mom65_y_64qam =real(mom6x( y_64qam )),- 
mom6 5_y_6 4 qam_n=mom6 5_y_6 4 qam/y_6 4qam_energyA 3; 
mom65_y_256qam =real(mom6x( y_256qam)); 
mom6 5_y_2 5 6 qam_n=mom6 5_y_2 5 6 qam/y_2 5 6 qam_ene rgyA 3; 
a65=[mom65_y_2fsk_n mom65_y_4fsk_n mom65_y_8fsk_n mom65_y_2psk_n 
mom65_y_4psk_n mom65_y_8psk_n mom65_y_16qam_n mom65_y_64qam_n 
mom65_y_256qam_n]; 
SUM_mom6 5 =[SUM_mom6 5;a 6 5] ; 
a65=[] ; 
% -ictn 84 
mom84_y_2fsk =real(mom8x(y_2fsk,1)) 
mom84_y_4fsk =real(mom8x(y_4fsk,1)) 
mom84_y_8fsk =real(mom8x(y_8fsk,1)) 
mom84_y_2psk =real(mom8x(y_2psk,1)) 
mom84_y_4psk =real(mom8x(y_4psk,1)) 
mom84_y_8psk =real(mom8x(y_8psk,1)) 
mom84_y_16qam =real(mom8x(y_16qam,1)); 
mom84_y_64qam =real(mom8x(y_64qam,1)); 
mom84_y_256qam=real(mom8x(y_256qam,1) ) ; 
mom84_y_2fsk_n=mom84_y_2fsk/y_2fsk_energy*4; 
mom84_y_4fsk_n=mom84_y_4fsk/y_4fsk_energy^4; 
mom84_y_8fsk_n=mom84_y_8fsk/y_8fsk_energy^4; 
mom84_y_2psk_n=mom84_y_2psk/y_2psk_energyA4; 
mom84_y_4psk_n=tnom84_y_4psk/y_4psk_energyA4; 
mom84_y_8psk_n=mom84_y_8psk/y_8psk_energy*4; 
mom84_y_16qam_n=mom84_y_16qam/y_16qam_energyA4; 
mom84_y_64qam_n=mom84_y_64qam/y_64qam_energyÄ4; 
mom8 4_y_2 5 6 qam_n=mom8 4_y_2 5 6 qam/y_2 5 6 qam_energyÄ 4 ,- 
m84=[mom84_y_2fsk_n mom84_y_4fsk_n mom84_y_8fsk_n mom84_y_2psk_n 
mom84_y_4psk_n mom84_y_8psk_n mom84_y_16qam_n morti84_y_64qam_n 
mom84_y_256qam_n]; 
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SUM_mom84=[SUM_mom84;m84]; 
m84= [] ; 
%mom86 
mom86_y_2fsk =real(mom8x(y_2fsk,2)); 
mom86_y_4fsk =real(mom8x(y_4fsk,2)); 
mom86_y_8fsk =real(mom8x(y_8fsk,2)); 
mom86_y_2psk =real(mom8x(y_2psk,2)); 
mom86_y_4psk =real(mom8x(y_4psk,2)); 
mom86_y_8psk =real(mom8x(y_8psk,2)); 
mom86_y_16qam =real(mom8x(y_16qam,2)); 
mom86_y_64qam =real(mom8x(y_64qam,2)); 
mom86_y_256qam=real(mom8x(y_256qam,2)); 
mom8 6_y_2 fsk_n=mom8 S_y_2fsk/y_2 fsk_energyA4; 
mom8 6_y_4 fsk_n=mom8 6_y_4fsk/y_4 fsk_energy*4; 
mom86_y_8fsk_n=mom86_y_8fsk/y_8fsk_energy*4; 
mom8 6_y_2psk_n=mom8 6_y_2psk/y_2psk_energyÄ4; 
mom8 6_y_4psk_n=mom8 6_y_4psk/y_4psk_energy^4; 
mom86_y_8psk_n=mom86_y_8psk/y_8psk_energy*4; 
mom86_y_l6qam_n=mom86_y_16qam/y_l6qam_energy~4 ; 
mom8 6_y_6 4 qam_n=mom8 6_y_6 4qam/y_6 4 qam_energyÄ 4; 
mom8 6_y_2 5 6qam_n=mom8 6_y_2 5 6qam/y_2 5 6qam_energyA4; 
m86=[mom8 6_y_2fsk_n mom86_y_4fsk_n mom86_y_8fsk_n mom86_y_2psk_n 
mom86_y_4psk_n mom86_y_8psk_n mom86_y_16qam_n mom86_y_64qam_n 
mom86_y_256qam_n] ; 
SUM_mom8 6 =[SUM_mom8 6;m8 6] ; 
m86=[] ; 
% C44 
cum44_y_2fsk 
=real(cum4x((y_2fsk),conj(y_2fsk),y_2fsk,conj(y_2fsk),0,samples_to_keep 
,0,'biased')); 
cum44_y_2fsk_n=cum44_y_2fsk/ y_2fsk_energy*2; 
cum44_y_4fsk 
=real(cum4x((y_4fsk),conj(y_4fsk),y_4fsk,conj(y_4fsk),0,samples_to_keep 
,0,'biased')); 
cum4 4_y_4 f sk_n=cum4 4_y_4 f sk/ y_4 f sk_energyA 2; 
cum44_y_8fsk 
=real(cum4x((y_8fsk),conj(y_8fsk),y_8fsk,conj(y_8fsk),0,samples_to_keep 
,0,'biased')); 
cum44_y_8fsk_n=cum44_y_8fsk/ y_8fsk_energyA2; 
cum44_y_2psk 
=real(cum4x((y_2psk),conj(y_2psk),y_2psk,conj(y_2psk),0,samples_to_keep 
,0,'biased')); 
cum44_y_2psk_n=cum44_y_2psk/ y_2psk_energy*2; 
cum44_y_4psk 
=real(cum4x((y_4psk),conj(y_4psk),y_4psk,conj(y_4psk),0,samples_to_keep' 
,0,'biased')); 
cum44_y_4psk_n=cum44_y_4psk/ y_4psk_energyÄ2; 
cum44_y_8psk 
=real(cum4x((y_8psk),conj(y_8psk),y_8psk,conj(y_8psk),0,samples_to_keep 
,0,'biased')); 
cum44_y_8psk_n=cum44_y_8psk/ y_8psk_energy^2 ,- 
cum4 4_y_l6 qam 
=real(cum4x((y_16qam),conj(y_16qam),y_16qam,conj(y_16qam),0,samples_to_ 
keep,0,'biased')); 
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cum44_y_16qam_n=cum44_y_16qam/y_16gam_energyÄ2; 
cum4 4_y_6 4 qam 
=real(cum4x((y_64qam),conj(y_64qam) ,y_64qam,conj(y_64qam),0,samples_to_ 
keep,0,'biased')); 
cum44_y_64qam_n=cum44_y_64qam/y_64qam_energyA2; 
cum4 4_y_2 5 6 qam 
=real(cum4x((y_256qam),conj(y_256qam),y_256qam,conj(y_256qam),0,samples 
_to_keep, 0,'biased')) ,- 
cum44_y_256qam_n=cum44_y_256qam/y_256qam_energy*2; 
a44=[cum44_y_2fsk_n cum44_y_4fsk_n cum44_y_8fsk_n cum44_y_2psk_n 
cum44_y_4psk_n cum44_y_8psk_n cum44_y_16qam_n cum44_y_64qam_n 
cum44_y_256qam_n]; 
SUM_cum44=[SUM_cum44;a44] ; 
a44= [] ; 
% C88 
mom88_y_2fsk 
mom88_y_4fsk 
mom88_y_8fsk 
mom88_y_2psk 
mom88_y_4psk 
mom88_y_8psk 
mom8 8_y_l6qam 

=real(mom8x(y_2fsk,0)) 
=real(mom8x(y_4fsk,0)) 
=real(mom8x(y_8fsk,0)) 
=real(mom8x(y_2psk,0)) 
=real(mom8x(y_4psk,0)) 
=real(mom8x(y_8psk,0)) 

real(mom8x(y_16qam,0)) 
mom88_y_64qam =real(mom8x(y_64qam,0)); 
mom88_y_256qam=real(mom8x(y_256qam,0)) 
mom44_y_2fsk =real(mom4x(y_2fsk,0)) 
mom44_y_4fsk =real(mom4x(y_4fsk,0)) 
mom44_y_8fsk =real(mom4x(y_8fsk,0)) 
mom44_y_2psk =real(mom4x(y_2psk,0)) 
mom44_y_4psk =real(mom4x(y_4psk,0)) 
mom44_y_8psk =real(mom4x(y_8psk,0)) 
mom44_y_16qam =real(mom4x(y_16qam,0)),- 
mom44_y_64qam =real(mom4x(y_64qam,0) ) ; 
mom44_y_2 56qam =real(mom4x(y_256qam,0)); 
mom22_y_2fsk =real(mom2x(y_2fsk,0)) 

=real(mom2x(y_4fsk,0)) 
=real(mom2x(y_8fsk,0) ) 
=real(mom2x(y_2psk,0) ) 
=real(mom2x(y_4psk,0)) 
=real(mom2x(y_8psk,0)) 
real(mom2x(y_16qam,0)) ; 

mom2 2_y_4 f s k 
mom22_y_8fsk 
mom2 2_y_2psk 
mom22_y_4psk 
mom22_y_8psk 
mom2 2_y_l6 qam 
mom22_y_64qam =real(mom2x(y_64qam,0)) 
mom22_y_256qam =real(mom2x(y_256qam,0)); 
cum88_y_2fsk 
=real(cum8x(mom88_y_2fsk,mom44_y_2fsk,mom22_y_2fsk,0,0,0,0,0)); 
cum8 8_y_2 f sk_n=cum8 8_y_2 f sk/y_2 f sk_energy""4 ; 
cum88_y_4fsk 
=real(cum8x(mom88_y_4fsk,mom44_y_4fsk,mom22_y_4fsk,0,0,0,0,0)); 
cum88_y_4fsk_n=cum88_y_4fsk/y_4fsk_energy^4; 
cum88_y_8fsk 
=real(cum8x(mom88_y_8fsk,mom44_y_8fsk,mom22_y_8fsk,0,0,0,0,0)); 
cum8 8_y_8 f sk_n=cum8 8_y_8 f sk/y_8 f sk_energyA4 ,- 
cum8 8_y_2psk 
=real(cum8x(mom88_y_2psk,mom44_y_2psk,mom22_y_2psk, 0,0,0,0,0)) ; 
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cum88_y_2psk_n=cum88_y_2psk/y_2psk_energyÄ4; 
cum88_y_4psk 
=real(cum8x(mom88_y_4psk,mom44_y_4psk,mom22_y_4psk,0,0,0,0,0)); 
cum88_y_4psk_n=cum88_y_4psk/y_4psk_energyA4; 
cum88_y_8psk 
=real(cum8x(mom88_y_8psk,morn44_y_8psk,mom22_y_8psk,0,0,0,0,0)); 
cum88_y_8psk_n=cum88_y_8psk/y_8psk_energy^4,- 
cum88_y_16qam =real (cum8x (mom88_y_16qam   ,morn44_y_16qam 
,mom22_y_16qam,0,0,0,0,0)); 
cum88_y_16qam_n=cum88_y_16qam/y_16qam_energy*4; 
cum88_y_64qam =real(cum8x(mom88_y_64qam ,mom44_y_64qam 
,mom22_y_64qam,0,0,0,0,0)); 
cum8 8_y_6 4 qam_n=cum8 8_y_6 4 qam/y_6 4 qam_energyx 4; 
cum88_y_256qam =real(cum8x(mom88_y_256qam ,mom44_y_256qam 
,mom22_y_256qam,0,0,0,0,0)); 
cum8 8_y_2 5 6 qam_n= cum8 8_y_2 5 6 qam/y_2 5 6 qam_energyA 4; 
a88=[cum88_y_2fsk_n  cum88_y_4fsk_n  cum88_y_8fsk_n  cum88_y_2psk_n 
cum88_y_4psk_n cum88_y_8psk_n cum88_y_16qatn_n cum88_y_64qam_n 
cum88_y_256qam_n]; 
SUM_cum8 8 =[SUM_cum8 8;a 8 8] ; 
a8 8=[] ; 
% morn44 
mom4 4_y_2 f sk_n=mom4 4_y_2 f sk/y_2 f sk_energy ,- 
mom4 4_y_4 f sk_n=mom44_y_4 f sk/y_4 f sk_energy; 
mom44_y_8 f sk_n=mom44_y_8 f sk/y_8 f sk_energy ,- 
mom44_y_2psk_n=mom44_y_2psk/y_2psk_energy; 
mom44_y_8psk_n=mom44_y_8psk/y_8psk_energy; 
mom4 4_y_l6 qam_n=mom4 4_y_l6 qam/y_l6 qam_energy; 
mom44_y_64qam_n=mom44_y_64qam/y_64qam_energy; 
mom4 4_y_2 5 6qam_n=mom44_y_2 5 6qam/y_2 5 6qam_energy; 
am44=[mom44_y_2fsk_n mom44_y_4fsk_n mom44_y_8fsk_n mom44_y_2psk_n 
mom44_y_4psk_n morn44_y_8psk_n mom44_y_16qam_n mom44_y_64qam_n 
morn44_y_256qam_n] ; 
SUM_mom44=[SUM_mom44;am44]; 
am44= [] ; 
% mom22 
mom22_y_2fsk_n=mom22_y_2fsk/y_2fsk_energy; 
mom22_y_4fsk_n=mom22_y_4fsk/y_4fsk_energy; 
mom22_y_8fsk_n=mom22_y_8fsk/y_8fsk_energy; 
mom22_y_2psk_n=mom22_y_2psk/y_2psk_energy; 
mom22_y_4psk_n=mom22_y_4psk/y_4psk_energy; 
mom22_y_8psk_n=mom22_y_8psk/y_8psk_energy; 
mom22_y_16qam_n=mom22_y_16qam/y_16qam_energy; 
mom2 2_y_6 4 qam_n=mom2 2_y_6 4qam/y_6 4 qam_energy; 
mom2 2_y_2 5 6qam_n=mom22_y_2 5 6qam/y_2 5 6qam_energy; 
a22=[mom22_y_2fsk_n mom22_y_4fsk_n mom22_y_8fsk_n mom22_y_2psk_n 
mom22_y_4psk_n mom22_y_8psk_n mom22_y_16qam_n mom22_y_64qam_n 
mom22_y_256qam_n] ; 
SUM_mom2 2 =[SUM_mom2 2;a 2 2] ; 
a22=[] ; 
%   CUM65 
mom21_y_2fsk =real(mom2x(y_2fsk,1)) 
mom21_y_4fsk =real(mom2x(y_4fsk,1)) 
mom21_y_8fsk =real(mom2x(y_8fsk,1)) 
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mom21_y_2psk =real(mom2x(y_2psk,1)) 
mom21_y_4psk =real(mom2x(y_4psk,1) ) 
mom21_y_8psk =real(mom2x(y_8psk,1)) 
mom21_y_16qam =real(mom2x(y_16qam,1)); 
mom21_y_64gam =real(mom2x(y_64qam,1)) ; 
mom21_y_256qam =real(mom2x(y_256qam,1)); 
cum65_y_2fsk=(mom65_y_2fsk-10*mom22_y_2fsk*mom43_y_2fsk- 
5*mom21_y_2fsk*mom44_y_2fsk+30*(mom22_y_2fsk*2)*mom21_y_2fsk); 
cum65_y_2fsk_n=cum65_y_2fsk/(y_2fsk_energyA3) 
cum65_y_4fsk=(mom65_y_4fsk-10*mom22_y_4fsk*mom43_y_4fsk- 
5*mom21_y_4fsk*mom44_y_4fsk+30*(mom22_y_4fsk*2)*mom21_y_4fsk); 
cum65_y_4fsk_n=cum65_y_4fsk/(y_4fsk_energy*3) 
cum65_y_8fsk=(mom65_y_8fsk-10*mom22_y_8fsk*mom43_y_8fsk- 
5*mom21_y_8fsk*mom44_y_8fsk+30*(mom22_y_8fsk*2)*mom21_y_8fsk); 
cum65_y_8fsk_n=cum65_y_8fsk/(y_8fsk_energyA3) 
cum65_y_2psk=(mom65_y_2psk-10*mom22_y_2psk*mom43_y_2psk- 
5*mom21_y_2psk*mom44_y_2psk+30*(mom22_y_2pskA2)*mom21_y_2psk); 
cum65_y_2psk_n=cum65_y_2psk/(y_2psk_energy*3) 
cum65_y_4psk=(mom65_y_4psk-10*mom22_y_4psk*mom43_y_4psk- 
5*mom21_y_4psk*mom44_y_4psk+3 0*(mom22_y_4psk^2)*mom21_y_4psk); 
cum65_y_4psk_n=cum65_y_4psk/(y_4psk_energyA3) 
cum65_y_8psk=(mom65_y_8psk-10*mom22_y_8psk*mom43_y_8psk- 
5*mom21_y_8psk*mom44_y_8psk+30*(mom22_y_8psk^2)*mom21_y_8psk); 
cum65_y_8psk_n=cum65_y_8psk/(y_8psk_energy*3) 
cum65_y_16qam=(mom65_y_16qam-10*mom22_y_16qam*mom43_y_16qam- 
5*mom21_y_16qam*mom44_y_16qam+30*(mom22_y_16qamÄ2)*mom21_y_16qam); 
cum65_y_16qam_n=cum65_y_lSqam/(y_16qam_energy^3) 
cum65_y_64qam=(mom65_y_64qam-10*mom22_y_64qam*mom43_y_64qam- 
5*mom21_y_64qam*mom44_y_64qam+30*(mom22_y_64qamA2)*mom21_y_64qam); 
cum65_y_64qam_n=cum65_y_64qam/(y_64qam_energyA3) 
cum65_y_256qam=(mom65_y_256qam-10*mom22_y_256qam*mom43_y_256qam- 
5*mom21_y_256qam*mom44_y_256qam+30*(mom22_y_256qamA2)*mom21_y_256qam); 
cum65_y_256qam_n=cum65_y_256qam/(y_256qam_energy*3) 
ac65=[cum65_y_2fsk_n cum65_y_4fsk_n cum65_y_8fsk_n cum65_y_2psk_n 
cum65_y_4psk_n  cum65_y_8psk_n cum65_y_16qam_n cutn65_y_64qam_n 
cum65_y_256qam_n]; 
SUM_cum6 5 =[SUM_cum6 5;ac 6 5] ; 
ac65=[] ; 
%  CUM84 
cum84_y_2fsk 
=real(cum8x(mom84_y_2fsk,mom44_y_2fsk,mom22_y_2fsk,mom84_y_2fsk,mom42_y 
_2fsk,mom43_y_2fsk,mom21_y_2fsk,1) ) ; 
cum84_y_2fsk_n=cum84_y_2fsk/y_2fsk_energy*4; 
cum8 4_y_4 f sk 
=real(cum8x(mom84_y_4fsk,mom44_y_4fsk,mom22_y_4fsk,mom84_y_4fsk,mom42_y 
_4fsk,mom43_y_4fsk,mom21_y_4fsk,1)); 
cum84_y_4fsk_n=cum84_y_4fsk/y_4fsk_energyA4; 
cum84_y_8fsk 
=real(cum8x(mom84_y_8fsk,mom44_y_8fsk,mom22_y_8fsk,mom84_y_8fsk,mom42_y 
_8fsk,mom43_y_8f sk,mom21_y_8f sk, 1) ) ,- 
cum84_y_8fsk_n=cum84_y_8fsk/y_8fsk_energy*4; 
cum84_y_2psk 
=real(cum8x(mom84_y_2psk,mom44_y_2psk,mom22_y_2psk,mom84_y_2psk,mom42_y 
_2psk/mom43_y_2psk,mom21_y_2psk, 1) ) ; 
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cum84_y_2psk_n=cum84_y_2psk/y_2psk_energy''4; 
cum84_y_4psk 
=real(cum8x(mom84_y_4psk,mom44_y_4psk,mom22_y_4psk,mom84_y_4psk,mom42_y 
_4psk,mom43_y_4psk,mom21_y_4psk,1)); 
cum84_y_4psk_n=cum84_y_4psk/y_4psk_energyA4; 
cum84_y_8psk 
=real(cum8x(mom84_y_8psk,mom44_y_8psk,mom22_y_8psk,mom84_y_8psk,mom42_y 
_8psk,mom43_y_8psk,mom21_y_8psk,1)); 
cum84_y_8psk_n=cum84_y_8psk/y_8psk_energyA4; 
cum84_y_16qam 
=real(cum8x(mom84_y_16qam,mom44_y_16qam,mom22_y_16qam,mom84_y_16qam,mom 
42_y_16qam,mom43_y_16qam,mom21_y_16qam,1)); 
cum84_y_16qam_n=cum84_y_16qam/y_16qam_energyx4; 
cum84_y_64qam 
=real(cum8x(mom84_y_64qam,mom44_y_64qam,mom22_y_64qam,mom84_y_64qam,mom 
42_y_64qam,mom43_y_64qam,mom21_y_64qam,1)); 
cum8 4_y_6 4qam_n=cum8 4_y_6 4 qam/y_6 4 qam_energy^ 4; 
cum8 4_y_2 5 6 qam 
=real(cum8x(mom8 4_y_2 5 6 qam,mom4 4_y_2 5 6 qam,mom2 2_y_2 5 6 qam,mom8 4_y_2 5 6 qam 
,mom42_y_256qam,mom43_y_256qam,mom21_y_256qam,1)); 
cum8 4_y_2 5 6 qam_n=cum8 4_y_2 5 6 qam/y_2 5 6qam_energyÄ4; 
a84= [cum84_y_2fsk_n cum84_y_4fsk_n cum84_y_8fsk_n cum84_y_2psk_n 
cum84_y_4psk_n cum84_y_8psk_n cum84_y_16qam_n cum84_y_64qam_n 
cum84_y_256qam_n]; 
SUM_cum84=[SUM_cum84;a84] ; 
a84=[] ; 
end 
end 
end 
% Save all data to the workspace 
save classifier_datal SUM_mom22 SUM_mom43 SUM_mom44 SUM_mom65 SUM_cum44 
SUM_cum65 SDM_cum88  SUM_cum84 
% Plot all moments and cumulants 
figure 
plot(1:length(SUM_mom43),SUM_mom43(:,1 
plot(1:length(SUM_mom43),SUM_mom43(:,2 
plot(1:length(SUM_mom43),SUM_mom43(:,3 
plot(1:length(SUM_mom43),SUM_mom43(:,4 
plot(1:length(SUM_mom43),SUM_mom43(:,5 
plot(1:length(SUM_mom43),SUM_mom43(:,6 
plot(1:length(SUM_mom43),SUM_mom43(:,7 
plot(1:length(SUM_mom43),SUM_mom43(:,8 
plot(1:length(SUM_mom43),SUM_mom43(:,9 
title('M43') 
figure 
plot(1:length(SUM_mom65),SUM_mom65(:,1 
plot(1:length(SUM_mom65),SUM_mom65(:,2 
plot(1:length(SUM_mom65),SUM_mom65(:,3 
plot(1:length(SUM_mom65),SUM_momS5(:,4 
plot(1:length(SUM_mom65),SUM_mom65(:,5 
plot(1:length(SUM_mom65),SUM_mom65(:, 6 
plot(1:length(SUM_mom65),SUM_mom65(:,7 
plot(1:length(SUM_mom65),SUM_mom65(:,8 
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SUM mom65(:, 9) ,'*b') plot(1:length(SUM_mom65) 
title('M65') 
figure 
plot(1:length(SUM_mom44),SUM_mom44(: 
plot(1:length(SUM_mom44),SUM_mom44(: 
plot(1:length(SUM_mom44),SUM_mom44(: 
plot(1:length(SUM_mom44),SUM_mom44(: 
plot(1:length(SUM_mom44),SUM_mom44(: 
plot(1:length(SUM_mom44),SUM_mom44(: 
plot(1:length(SUM_mom44),SUM_mom44(: 
plot(1:length(SUM_mom44),SUM_mom44(: 
plot(1:length(SUM_mom44),SUM_mom44(: 
title('M44') 
figure 
plot(1:length(SUM_mom42),SUM_mom42(: 
plot (1: length (StFM_mom42) , SUM_mom42 (: 
plot(1:length(SUM_mom42),SUM_mom42(: 
plot(1:length(SUM_mom42),SUM_mom42(: 
plot(1:length(SUM_mom42),SUM_mom42(: 
plot(1:length(SUM_mom42),SUM_mom42(: 
plot(1:length(SUM_mom42),SUM_mom42(: 
plot(1:length(SUM_mom42),SUM_mom42(: 
plot(1:length(SUM_mom42),SUM_mom42(: 
title('M42') 
figure 
plot(1:length(SUM_mom84),SUM_mom84(: 
plot(1:length(SUM_mom84),SUM_mom84(: 
plot(1:length(SUM_mom84),SUM_mom84(: 
plot(1:length(SUM_mom84),SUM_mom84(: 
plot(1:length(SUM_mom84),SUM_mom84(: 
plot(1:length(SUM_mom84),SUM_mom84(: 
plot(1:length(SUM_mom84),SUM_mom84(: 
plot(1:length(SUM_mom84),SUM_mora84(: 
plot(1:length(SUM_mom84),SUM_mom84(: 
title('M84') 
figure 
plot(1:length(SUM_mom86),SUM_mom86(: 
plot(1:length(SUM_mom86),SUM_mom86(: 
plot(1:length(SUM_mom86),SUM_mom86(: 
plot(1:length(SUM_mom8 6),SUM_mom8 6(: 
plot(1:length(SUM_mom86),SUM_mom86(: 
plot(1:length(SUM_mom86),SUM_mom86(: 
plot(1:length(SUM_mom86),SUM_mom86(: 
plot(1:length(SUM_mom86),SUM_mom86(: 
plot(1:length(SUM_mom86),SUM_mom86(: 
title('M86') 
figure 
plot(1:length(SUM_cum44),SUM_cum44(: 
plot(1:length(SUM_cum44),SUM_cum44(: 
plot(1:length(SUM_cum44),SUM_cum44(: 
plot(1:length(SUM_cum44),SUM_cum44(: 
plot(1:length(SUM_cum44),SUM_cum44(: 
plot(1:length(SUM_cum44),SUM_cum44(: 
plot(1:length(SUM_cum44),SUM_cum44(: 
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,8),'ob');hold on 
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,1) , 'k') ,-hold on 
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,5) , 'y') ,-hold on 
,6) , 'm') ,-hold on 
, 7) , ' C ) ,-hold on 
, 8) , ' ob' ) ,- hold on 
,9),'*b') 

,1) , 'k') ,-hold on 
,2) , 'b') ,-hold on 
,3) , 'g') ,-hold on 
,4) , ' r') ,-hold on 
, 5) , 'y') ,-hold on 
,6) , 'n') ,-hold on 
, 7) , 'c') ,-hold on 
, 8) , 'ob') ,-hold on 
,9),'*b') 

,1) , 'k') ,-hold on 
,2) , 'b') ,-hold on 
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plot (1 :length(SUM_cum44) ,SUM_cum44( ,8) , ob' ) ;hol< i on 
plot (1 :length(SUM_cum44) ,SUM_cum44( ,9) , *b' ) 
title( iCUM44') 
figure 
plot(1 :length(SUM_cum88) ,SUM_cum88( ,1), :<■) ;hold on 

plotd :length(SUM_cum8 8) ,SUM_cum88( ,2) , b') ;hold on 

plotd :length(SUM_cum8 8) ,SUM_cum88( ,3), g') ;hold on 

plot(l :length(SUM_cum88) ,SUM_cum88( ,4), r') ;hold on 

plotd :1ength(SUM_cum8 8) ,SUM_cum88( ,5), y') ,-hold on 

plotd :length(SUM_cum88) ,SUM_cum88(: ,6), m') ;hold on 
piotd :length(SUM_cum88) ,SUM_cum88(: ,7) , C) ,-hold on 
piotd :length(SUM_cum8 8) ,SUM_cum88(: ,8) , ob' );hold on 

lOtd:. Length(SUM_cum88), SUM_cum88(:, 9), " <b") 
title ('CUM88') 
figure 
plot(1 length(SUM_cum84) /SUM_cum84(: ,1) , k') ;hold on 
plotd length(SUM_cum84) ,SUM_cum84(: ,2) , b') ;hold on 

plotd length(SUM_cum84) ,SUM_cum84(: ,3), g') ;hold on 
plotd length(SUM_cum84) , SUM_cum84 (: ,4), r') ;hold on 
plot (1 length(SUM_cum84) ,SUM_Cum84( : ,5), y) ,-hold on 
plotd length(SUM_cum84) ,SUM_Cum84(: ,6), m') ,-hold on 
plot (1 length(SUM_cum84) , SUM_CUtn84 ( : ,7), ' C) -hold on 
plotd length(SUM_cum84) , SUM_CUltl84 ( : ,8), ■ ob' ;hold on 

plot (1 length(SUM_cum84) ,SUM_cum84(: ,9) , ' *b' 
title ('CUM84') 
figure 
plot(l length(SUM_mom22) ,SUM_mom22(: ,1), ' k') •hold on 
plotd length(SUM_mom2 2) ,SUM_mom22(: ,2) , ' b') •hold on 
plotd 1ength(SUM_mom2 2) ,SUM_mom22(: ,3), ' g') •hold on 
plotd length(SUM_mom22) ,SUM_mom22(: ,4), ' r') •hold on 
plotd length(SUM_mom22) SUM_niom22 (: ,5), " y) •hold on 
piotd 1ength(SUM_mom22) SUM_mom22(: ,6) , ' in') •hold on 
piotd length(SUM_mom22) SUM_mom22(: ,7), ' C) •hold on 
piotd 1ength(SUM_mom2 2) SUM_mom22(: ,8), ' ob') ,-hold on 

piotd length(SUM_mom22) SUM_mom22(: ,9), ' *b') 

title ('mom22') 
figure 
plotd length(SUM_cum65) SUM_cum65(: ,1), ' k ) hold on 
plotd 1ength(SUM_cum65) SUM_cum65(: ,2) , ' b ) hold on 
plotd length(SUM_cum65) SUM_cum65( : ,3), ' g ) hold on 
plot (1 length(SUM_cum65) SUM_cum65(: ,4), ' r ) hold on 
plotd length(SUM_cum65) SUM_cum65(: ,5) , ' y ) hold on 
plotd 1ength(SUM_cum65) SUM_cum65(: ,6), ' m ) hold on 
piotd 1ength(SUM_cum65) SUM_cum65(: ,7), ' C) hold on 
piotd length(SUM_cum65) SDM_cum65(: ,8), ' ob') ;hold on 
piotd length(SUM_cum65) SUM_cum65( : ,9), ' *b' 
title 'CUM65') 
figure 
plotd: length(SUM_cur),SUM_cur(:,1), ' k ' ) ; hole 1 on 
plotd- length(SUM_cur),SUM_cur(:,2), ■b<); hole 1 on 

plot(l: length(SUM_cur),SUM_cur(:,3), 'g'); hole 1 on 
plottl: length(SUM_cur),SUM_cur(:,4), ' r ' ) ; hole I on 

plOt(l: length(SUM_cur),SUM_cur(:,5), 'V'); hole i on 
plOt(l: length(SUM_cur),SUM_cur(:,6), 'm') ; he )lC 1 on 
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plot(1:length(SUM_cur),SUM_cur(:,7),'c');hold on 
plot (1: length (SUM_cur) , SUM_cur (:, 8) , ' ob') ,-hold on 
plot (1:length(SUM_cur),SUM_cur(:,9),'*b'); 
title ('kurtcsis') 
% END     OFF  UNCTION 

function  CREATE_SIGNALS(samples) 
%********************************************************************** 

%  Function 
%       -Creates the PSK,FSK & QAM signals and stores them in the 
workspace 
a, 
"5 

% Use: CREATE_SIGNALS(samples) 

% Input:    samples-> The number desired samples for all modulations 
o, 
o 

% Returns:  The created signals are saved to workspace 
"3 

% 21 January 2001 
% LtJg George Hatzichristos Hellenic Navy 
%********************************************************************** 
% SIGNAL ATTRIBUTES 
fd=le6;% SET bit rate of signal 
N=samples*2 ;% number of samples 
samples_to_keep=samples; 
bin=256; 
snr_db=2 00; 
snr=10^(snr_db/10) 
% *************************************** 
message= []; 
message_mqam=[]; 
PSK_signals=[]; 
FSK_signals= [] ,- 
QAM_signals=[] ; 
% This loop is for the M of M-QAM for 16,64,256-QAM 

for general_loopl=l :3 
if general_loopl==l 

Mqam=16; 
M=2; 
bitsqam=4; 
bitsfsk=l; 
bitspsk=l; 

elseif general_loopl==2 
Mqam=64; 
M=4; 
bitsqam=6; 
bitsfsk=2; 
bitspsk=2; 

else 
Mqam=256; 
M=8; 
bitsqam=8; 
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the psk&fsk 

bitsfsk=3; 
bitspsk=3; 

end 
% I am using 4 samples/symbol 
fsymbolqam=fd/bitsqam 
fsymbolfsk=fd/bitsfsk 
fsymbolpsk=fd/bitspsk 
fcarriergam=fsymbolqam*2; 
fcarrierfsk=fsymbolfsk*2; 
fcarrierpsk=fsymbolpsk*2; 
fsamplingqam=fcarrierqam*2; 
fsamplingfsk=fcarrierfsk*2; 
fsamplingpsk=fcarrierpsk*2; 
npts_qam=fsamp1ingqam*N/fsymbo1qam 
npts_psk=fsamplingpsk*N/fsyrnbolpsk 
npts_fsk=fsamplingfsk*N/fsymbolfsk 
symbolsqam=N/bitsqam 
symbolspsk=N/bitspsk 
symbolsfsk=N/bitsfsk 
% here is the random message fo 
message=randint(1,symbolspsk,M) 
%  M-QAM 
% will try for 16,64,256 qam 
qam_total= [] ; 
%  M-PSK 
% will try for 2,4,8 psk 
psk_total=[] ; 
%  M-FSK 
% will try for 2,4,8 fsk 
fsk_total=[] ; 
% here is the random message 
message_mqam=randint(1,symbolsqam,Mqam); 
% and here is the napping for the qam 
% We can pick any mapping we want.... 
mp_qam=modmap(message_mqam,fsymbolqam,fsamplingqam,'qask',Mqam); 
% Modulation 
[y_qam2,Y_qam] = getMqam(Mqam,fsamplingqam,fcarrierqam,bin,mp_qam); 
[y_psk2,Y_psk] = 

getMpsk(M,fsymbolpsk, fsamplingpsk, fcarrierpsk, bin, message) ,- 
[y_fsk2,Y_fsk] = 

getMfsk(M,fsymbolfsk,fsamplingfsk,fcarrierfsk,bin,message); 
y_qam=y_qam2(1:samples_to_keep) 
y_psk=y__psk2 (1: samples_to_keep) 
y_fsk=y_fsk2(1:samples_to_keep) 
PSK_signals=[PSK_signals y_josk] 
FSK_signals=[FSK_signals y_fsk] 
QAM_signals=[QAM_signals y_qam] 
end 
save testing_signals  FSK_signals PSK_signals QAM_signals 
% END  OF  FUNCTION 

for the  cram 
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function net_0=nn_blockO(dummy); 
%**•****************•****************•***********************•********* 

% Function 
%       - Creates and trains the neural network of block #0 
5, 

% Use: net_C=nn_blockO(dummy) 
g, 
o 

% Input:    dummy-> A dummy variable 
5, 
o 

% Returns:  net_0-> The train neural network object of block #0 
a 

% 21 January 2 001 
% LtJg George Hatzichristos Hellenic Navy 
%*****************************************^ 

load classifier_datalO 
blockO_input= [SÜM_cum88(:,1);SUM_cum88(:,2);SUM_cum88(:,3);SUM_cum88(:, 
4) ;SUM_CUm8 8 ( : , 5) ;SUM_Cum8 8(:,6) ;SUM_Cum8 8(:,7) ;SUM_CUm8 8(:,8) ;SUM_Cum8 
8(:,9)]; 
k=length(SUM_cum88(:,1)> ; 
blockO_target=[]; 
blockO_target=ones(3*k,1),- 
blockO_target=[blockO_target;-l*ones(k,1)]; 
blockO_target=[blockO_target;ones(5*k,l)]; 
mi=min(min(SUM_cum88)); 
ma=max(max(SUM_cum8 8)); 
netO = newff([mi ma],[8 l],{'tansic' 'satlins'}); 
epochs=40; 
netO.trainParam.epochs=epochs; 
[net_0,tr]   =  train(netO,blockO_input',blockO_target'); 
return 
% END     OF     FUNCTION 

function net_l=nn_blockl(dummy); 

% Function 
%       - Creates and trains the neural network of block #1 

% Use: net_l=nn_blockl(dummy) 

%  Input: dumniy-> A dummy variable 
o, 

% Returns:  net__I-> The train neural network object of block #1 
g, 
o 

% 21 January 2 001 
% LtJg George Hatzichristos Hellenic Navy 
%********************************************************************** 

clear all;load classifier_datal0 
blockl_input_A=[SUM_mom43(:,1);SUM_mom43(:,2);SUM_mom43(:,3);SUM_mom43( 
:,4);SUM_mom43(:,5);SUM_mom43(:,6);SUM_mom43(:,7);SUM_mom43(:,8);SUM_mo 
m43(:,9)]; 
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blockl_input_B=[SUM_mom22(:,1);SUM_mom22(:,2);SUM_mom22(:,3);SUM_mom22( 
:,4);SUM_mom22(:,5);SUM_mom22(:,6);SUM_mom22{:,7);SUM_mom22(:,8);SUM_mo 
m22(:,9)]; 
blockl_input=[blockl_input_A blockl_input_B]; 
k=length(SUM_mom43(:,1)); 
blockl_target=[];blockl_target=ones(3*k,1) 
blockl_target=[blockl_target;-l*ones(k,1) ] 
blockl_target=[blockl_target;zeros(5*k,l) ] 
mil=min(min(SUM_mom43));mal=max(max(SUM_mom43)); 
mi2=min(min(SUM_mom22));ma2=max(max(SUM_mom22)); 
tmi= [mil,-mi2] ;tma= [mal;ma2] ; 
netl  = newff([tmi  tma], [2 0   8  1] , {   'tansig'      'tansig'    'purelin'}); 
epochs=40; 
netl.trainParam.epochs=epochs,- 
[net_l,tr]   =  train(netl,blockl_input',blockl_target'); 
return 
% EN  DOFF  UNCTION 

function net_2=nn_block2(dummy); 
%********************************************************************** 
% Function 
%       - Creates and trains the neural network of block #2 
a, 

% Use: net_2=nn_block2(dummy) 

% Input:   dummy-> A dummy variable 

% Returns:  net_2-> The train neural netxv-ork object of block #2 

% 21 January 2 001 
% LtJg George Hatzichristos Hellenic Navy 
s-***** ***************************************************** ************ 
load classifier_datalO 
block2_input=[SUM_cum65(:,1);SUM_cum65(:,2);SUM_cum65(:,3)]; 
k=length(SUM_cum65(:,1)); 
block2_target= []; 
block2_target=-l*ones(k,1); 
block2_target=[block2_target;ones(2*k,1) ] ; 
mi=min(min(SUM_cum65)); 
ma=max(max(SUM_cum65)); 
net2 = newff([mi ma],[20 10 1],{'tansig' 'tansig'  'satlins'}); 
epochs=7 0; 
net2.trainParam.epochs=epochs; 
[net_2,tr]   =  train(net2,block2_input',block2_target'); 
return 
% ENDOFFUNCTION 

function net_3=nn_block3(dummy); 
%********************************************************************** 
% Function 
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%       - Creates and trains the neural network of block #3 
ft. 
o 

% Use: net_3=nn_block3(dummy) 
g. 
o 

% Input:   dummy-> A dummy variable 
g. 
"o 

% Returns:  net_3-> The train neural network object of block #3 
o 

% 21 January 2001 
% LtJg George Hatzichristcs Hellenic Navy 
S-********************************************************************** 

load classifier_datalO 
block3_input=[SUM_mom65(:,2);SUM_mom65(: , 3) ] ; 
k=length(SUM_mom65(:,2)); 
block3_target=[]; 
block3_target=ones(k,1); 
block3_target=[block3_target;-ones (k,1)]; 
mi=min(min(SUM_mom65)); 
ma=max(max(SUM_mom65)); 
net3 = newff([mi ma] , [14 4 2 l],{'tansig' 'tansig' 'tansig' 
'purelin'}); 
epochs=100; 
net3.trainParam.epochs=epochs; 
[net_3,tr]   =  train(net3,block3_input',block3_target'); 
return 
% ENDOFFUNCTION 

function net_4=nn_block4(dummy); 
S-********************************************************************** 

% Function 
%       - Creates and trains the neural network of block #4 
'S 

% Use: net_4=nn_block4(dummy) 
% 
% Input:   dummy-> A dummy variable 
% 
% Returns:  net_l-> The train neural network object of block #4 
'S 

% 21 January 2001 
% LtJg George Katzichristos Hellenic Navy 
s-********************************************************************** 

load classifier_datalO 
block4_input=[SUM_mom65(:,5);SUM_mom65(:,6);SUM_mom65(:,7);SUM_mom65(:, 
8) ;SUM_mom65(:,9)] ; 
k=length(SUM_mom65(:,6)); 
block4_target=[] ; 
block4_target=-ones(k,1); 
block4_target= [block4_target,-ones (k, 1) ] ; 
block4_target= [block4_target; zeros (3*k,l) ] ,- 

mi=min(min(SUM_mom65)); 
ma=max(max(SUM mom65)); 
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net4  = newff([mi ma],[20  10   l],{'tansig'    'tansig'    'satlins'}); 
epochs=4 0; 
net'4. trainParam.epochs=epochs; 
[net_4,tr]   =  train(net4,block4_input',block4_target'); 
return 
% EN  DOFF  UNCTION 

function net_5=nn_block5(dummy); 

%  Function 
%       - Creates and trains the neural network of block #5 

% Use: net_5=nn_block5(dummy) 
o, 
o 

% Input:   dummy-> A dummy variable 

% Returns:  net_5-> The train neural network object of block #5 

% 21 January 2 001 
% LtJg George Hatzichristos Hellenic Navy 
%********************************************************************** 
load classifier_datal0 
block5_input=[SUM_mom22(:,2);SUM_mom22(:,3)]; 
k=length(SUM_mom22( : , 2) ) ; 
block5_target=[]; 
block5_target=-ones (k, 1) ,- 
block5_target= [block5_target,-ones (k, 1) ] ; 
mi=min(min(SUM_mom22)); 
ma=max(max(SUM_mom22)); 
net5 = newff([mi ma] , [6 4 1],{'tansig' 'tansig' 'satlins'}); 
epochs=300; 
net5.trainParam.epochs=epochs; 
[net_5,tr]   =  train(net5,block5_input',block5_target'); 
return 
% END     OFF  UNCTION 

function net_6=nn_block6(dummy); 

% Function 
%       - Creates and trains the neural network of block #6 
'S 

% Use:   net_6=nn_block6(dummy) 

%  Input: dummy-> A dummy variable 
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% Returns:  net_6-> The train neural network object of block #6 

% 21 January 2001 
% LtJg George Hatzichristos Hellenic Navy 
5-********************************************************************** 

load classifier_datalO 
block6_input=[SUM_cum65(:,5);SUM_cum65(:,7);SUM_cum65(:,8);SUM_cum65(:, 
9)]; 
k=length(SUM_cum65(:,1) ) ; 
block6_target= []; 
block6_target=-ones(k,1); 
block6_target=[block6_target;ones(3*k,1)]; 
mi2=min(min(SUM_cum65)); 
ma2=max(max(SUM_cum65)); 
net6  = newff([mi2 ma2],[10  l],{'tansig*   'purelin'}); 
epochs=50; 
net6.trainParam.epochs=epochs; 
[net_6,tr] = train(net6,block6_input',block6_target *) ; 
return 
% END     OF     FUNCTION 

function trainJNNs (dummy) ; 
s-********************************************************************** 

%  Function 
%       - Saves into workspace all trained networks from blocks 0 to 4 

% Use:     train_NNs(dummy) 
5, 
o 

% Input:    dummy-> A dummy variable 

% Returns:  None 

% 21 January 2001 
% LtJg George Hatzichristos Hellenic Navy 
e- + **** *•** + ****************************•****■*■************** ************ 

clear all; 
% TRAIN ALL BLOCKS 
dummy=0; 
net_0=nn_block0(dummy); 
net_l=nn_blockl(dummy); 
net_2=nn_block2(dummy); 
net_3=nn_block3(dummy); 
net_4=nn_block4(dummy); 
save trained_NNs net_0 net_l net_2 net_3 net_4 
% END  OFF UNCTION 

function [noisy_signal]=addAWGN(signal,snr) 
$-********************************************************************** 
% Function 
%       - Creates a noisy sequence of the desired SNR using additive 
white gaussian noise 
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% Use:     [noisy_signal]=addAWGN(signal,snr) 

% Input:   signal-> The baseband signal that is desired to be 
distorted 
% snr -> The desired signal to noise ratio as a number and 
NOT as dB 
o, 
"o 

% Returns:  noisy_signal-> The output noisy sequence with the desired 
SNR 

% 21 January 2 001 
% LtJg George Hatzichristos Hellenic Navy 
2-************* ********************************************* ************ 

real_signal=real(signal); 
imag_signal=imag(signal); 
real_noise=randn(size(real_signal)); 
imag_noise=randn(size(imag_signal)); 
real_noise=real_noise-mean(real_noise); 
imag_noise=imag_noise-mean(imag_noise); 
sl=sum(abs(signal). A2); 
swl=ssl./snrj- 
sr^sumtrea^noise.^) ; sil=sum(imag_noise.^2); 
real_noise=real_noise./(srl.*0.5);itnag_noise=imag_noise./(sil.*0.5) ; 
real_noise=real_noise*((swl./2).A0.5); 
imag_noise=imag_noise*((swl./2).^0.5); 
real_signal=real_signal+real_noise;imag_signal=imag_signal+imag_noise; . 
noise=real_noise+i*imag_noise; 
noisy_signal=real_signal+imag_signal.*i; 
% END  OF  FUNCTION 

function [flag_storage]=ama_function(x_signal); 
e-********************************************************** ************ 
% Function 
%       - Implements the Alphabet Matched Algorithm classifier 
% 
% Use:    [flag_storage]=ama_function(x_signal) 

% Input:    signal-> The unknown M-QAM sequence 
o 

% Returns:  flag_storage-> A flag variable indicating the identified 
modulation 

% 21 January 2 001 
% LtJg George Hatzichristos Hellenic Navy 
3-********************************************************************** 

flagout=0; 
xmax_l6 qam= 0;xmax_6 4 qam= 0;xmax_2 5 6 qam= 0; 
ymax_16qam=0;ymax_64qam=0;ymax_256qam=0; 
centroid_matrix_16qam= [] ;centroid_matrix_64qam= [] ,- 
centroid_matrix_256qam=[] ; 
xvector_16qam= [] ;xvector_64qam= [] ,-xvector_256qam= [] ; 
yvector_16qam= [] ,-yvector_64qam= [] ;yvector_256qam= [] ; 

141 



% Do the FSE-CMA 
[x_signall,flagout]=fsecma(x_signal,0.5);flagout 
[x_signal2,flagout]=fsecma(x_signal,5);flagout 
if flagout==-l 

disp('we have ISqam') 
x_signal2=x_signall; 

end 
[x_signal3,flagout]=fsecma(x_signal,15);flagout 
if flagout==-l 

disp('we have ISqam') 
x_signal3=x_signal2; 

end 
% Do the preprocessing 
% Here the signal is processed so that its limits are from -1 to 1 
[pn,minp,maxp,tn,mint,maxt] =premnmx(real(x_signall),imag(x_signall)); 
x_signall=pn+i*tn; 
[pn,tninp,maxp,tn,mint,maxt] =premnmx(real(x_signal2),imag(x_signal2)); 
x_signal2=pn+i*tn; 
[pn,minp,maxp,tn,mint,maxt] =premnmx(real(x_signal3),imag(x_signal3)); 
x_signal3=pn+i*tn,- 
[snr_estl,gam_energy_estimate]=snr_estim(x_signall); 
[snr_est2/gam_energy_estimate]=snr_estim(x_signal2); 
[snr_est3,qam_energy_estimate]=snr_estim(x_signal3); 
snr_est=mean([snr_estl snr_est2 snr_est3]); 
%*********************•***************************•*****•************** 

% The position of the noisy signal's cancroids is affected from the 
signal to noise ratio 
% Therefore an estimate of the SNR helps to fine-tune the theoretical 
centroids as close 
% to the real centroids as possible. 

if snr_est<=8 
xmax_16gam=0.5 ; 
xmax_64qam=0.4; 
xmax_256gam=0.6 ; 

elseif snr_est>8 & snr_est<=ll 
xmax_l6 qam= 0.58; 
xmax_64qam=0.48; 
xmax_256qam=0.7; 

elseif snr_est>ll & snr_est<=14 
xmax_16qam=0.6; 
xmax_64qam=0.6; 
xmax_256qam=0.7; 
elseif snr_est>14 & snr_est<=18 
xmax_16qam=0.8; 
xmax_64qam=0.7; 

xmax_256qam=0.7; 
elseif snr_est>18 

xmax_16qam=0.8; 
xmax_64qam=0.7; 
xmax_2 5 6 qam= 0.7; 

end 
ymax_l 6 qam=xmax_l 6 qam ; 
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ymax_6 4 gam=xmax_6 4 qam ,- 
ymax_2 5 6 qam=xmax_2 5 6 qam; 
% Create the theoretical centroids of all three M-QAM modulations 
xvector_16qam=-xmax_16qam:2*xmax_16qam/3:xmax_16qam; 
yvector_16qam=-ymax_16qam:2*ymax_16qam/3:ymax_16qam; 
xvector_64qam=-xmax_64qam:2*xmax_64qam/7:xmax_64qam; 
yvector_64qam=-ymax_64qam:2*ymax_64qam/7:ymax_64qam; 
xvector_256qam=-xmax_256qam:2*xmax_256qam/15:xmax_256qam; 
yvector_256qam=-xmax_256qam:2*ymax_256qam/15:ymax_256qam; 
for loopl=l:4 

for loop2=l:4 
centroid_matrix_16qam=[centroid_matrix_16qam;xvector_16qam(loopl) 

yvector_16qam(loop2)]; 
end 

end 
for loopl=l:8 

for loop2=l:8 
centroid_matrix_64qam=[centroid_matrix_64qam;xvector_64qam(loopl) 

yvector_64qam(loop2) ] ; 
end 

end 
for loopl=l:16 

for loop2=l:16 
centroid_matrix_256qam=[centroid_matrix_256qam;xvector_256qam(loopl) 
yvector_256qam(loop2) ] ; 

end 
end 
centroid_vector_16qam=centroid_matrix_16qam(:,1)+i.*centroid_matrix_16q 
am(:,2) ; 
centroid_vector_64qam=centroid_matrix_64qam(:,1)+i.*centroid_matrix_64q 
am(:,2) ; 
centroid_vector_256qam=centroid_matrix_256qam(:,1)+i.*centroid_matrix_2 
56qam(:,2); 
%********************************************************************** 
% At this point, we have the theoretical centroids and our signal 
(already passed from fsecma 
% and corrupted with noise) 
e-********************************************************************** 
%INITIALIZE 
% initialize h 
samples=length(x_signall); 
taps=20; 
g=0.1; 
% First filter bank variables declarations 
sl=[] ;CF1=[] ; 
terml_l= [] ;term2_l= [] ,- 

TERM2_1=[];final_l=[];COSt_l=0;COST_l=[];COST_function_l=0;TERM3_1=[];h 
a_l=[]; 
hl=zeros (40000, taps) ,-cl= [] ; 
hi (:,taps/2)=1; 
cl=centroid_vector_16qam; 
Ml=16; 
sigmal=0.5*(0.2406) ; 
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% Second filter bank variables declaration 
S2=[] ;CF2=[] ; 
terml_2= [] ;term2_2= [] ; 
TERM2_2=[];final_2=[] ;COSt_2=0;COST_2=[] ;COST_function_2 = 0;TERM3_2=[] ;h 
a_2=[] ; 
h2=zeros(40000,taps);c2=[]; 
h2( : ,taps/2)=1; 
c2=centroid_vector_64qam; 
M2=64; 
sigma2=0.5*(0.1174),- 
% Third filter bank variables declaration 
S3=[] ;CF3=[] ; 
terml_3= [] ;terra2_3= [] ,- 
TERM2_3=[];final_3=[];COSt_3=0;COST_3=[];COST_function_3=0;TERM3_3=[];h 
a_3= [] ; 
h3=zeros (40000, taps) ,-c3= [] ; 
h3(:,taps/2)=1;; 
c3=centroid_vector_256qam; 
M3=256; 
sigma3=0.5*(0.0584) 
flag=2; 
% ***  BEGIN AMA  *** 
for k=taps:taps:samples-taps-10; 
xl=flipud(x_signall(k:k+taps-l,1)) 
x2=flipud(x_signal2(k:k+taps-l,1)) 
x3=flipud(x_signal3(k:k+taps-l,1)) 
flag=flag+l; 
% AMA for first filter bank 
for count=l:Ml; 
terml_l=hl(flag,:)*xl-cl(count); 
term2_l=(exp((- 
abs(terml_l)*2)/(2*sigmalA2) )*( (conj (terml_l)) / (sigmal^2)) *xl) ' ,- 
TERM2_1=[TERM2_1;(term2_l)]; 
cost_l=(exp(-(abs(terml_l)^2)/(2*(sigmal*2) ))) ,- 
COST_l=[COST_l;COSt_l]; 
end 
COST_l; 
TERM3_l=(l/taps)*SUtn(TERM2_l) ; 
COST_function_l=(1/taps)*(1-(sum(COST_l))); 
CF1=[CFl;COST_function_l]; 
mil=g*(norm(hl(flag-l, :) *xl) / (norm(TERM3_l))) ;%( (norrn(x) )"2)) ;% 
hi (flag,:)=hl(flag-l,:)-mil*(TERM3_1); 
al=hl(flag,:)*flipud(xl); 
Sl=[sl;mil];TERM3_1=[];TERM2_1=[];terml_l=[];term2_l=[];COST_l=[]; 
final_l=[final_l;al] ; 

% AMA for second filter bank 

for count=l:M2; 
terml_2=h2(flag,:)*x2-c2(count); 
term2_2=(exp((- 
abs(terml_2)A2)/(2*sigma2A2))*((conj(terml_2))/(sigma2A2))*x2)'; 
TERM2_2=[TERM2_2;(term2_2)]; 
cost_2=exp(-(abs(terml_2)Ä2)/(2*(sigma2A2))) ,- 
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C0ST_2=[COST_2;cost_2]; 
end 
TERM3_2=(1/taps)*Sum(TERM2_2); 
C0ST_function_2=(1/taps)*(1-(sum(C0ST_2))); 
CF2=[CF2;COST_function_2]; 
mi2=g*(norm(h2(flag-l,:)*x2)/(norm(TERM3_2))); 
h2(flag,:)=h2(flag-l,:)-mi2*(TERM3_2); 
a2=h2(flag,:)*flipud(x2); 
s2=[s2;mi2];TERM3_2=[];TERM2_2=[];terml_2=[];term2_2=[];C0ST_2=[]; 
final_2= [f inal_2,-a2] ; 
% AMA  for third  filter bank 
for count=l:M3; 
terml_3=h3(flag,:)*x3-c3(count); 
term2_3=(exp((- 
abs(terml_3)A2)/(2*sigma3^2))*((conj(terml_3))/(sigma3A2))*x3)',- 
TERM2_3=[TERM2_3;(term2_3)]; 
cost_3=exp(-(abs(terml_3)A2)/(2*(sigma3^2))); 
C0ST_3=[COST_3;COSt_3]; 
end 
TERM3_3=(1/taps)*sum(TERM2_3); 
C0ST_function_3= (1/taps) *(1- (sum(C0ST_3) ) ) ,- 
CF3= [CF3;C0ST_function_3]; 
mi3=g*(norm(h3(flag-l,:)*x3)/(norm(TERM3_3))); 
h3(flag,:)=h3(flag-1,:)-mi3*(TERM3_3); 
a3=h3 (f lag, :) *flipud(x3) ,- 
s3=[s3;mi3]; 
TERM3_3= [] ;TERM2_3= [] ;terml_3= [] ;term2_3= [] ;C0ST_3= [] ; 
final_3= [f inal_3 ,-a3] ; 
end 
dl=hist(CFl,16);d2=hist(CF2,64);d3=hist(CF3 , 256); 
criterion=[sum(dl(l:4))   sum(d2(1:16))   sum(d3(1:64))]; 
i=find(criterion==max (criterion) ) ,- 
if i==l 
disp('we have 16QAM');flag=70;flag_storage=7; 

elseif i==2 
disp (' we have 64QAM') ,- f lag=80; f lag_storage=8 ; 

elseif i==3 
dispCwe have 256QAM' ) ; f lag=90;f lag_storage=9; 

elseif i(l)==2 
disp ('we have 64QAK or 25SQAM');flag_storage=100; 

elseif i(l)==l 
disp('we have 16QAM or 64QAM');flag_storage=101; 

else 
disp('we have 16QAM or 25SQAM■);flag_storage=102; 

end 

return 
% ENDOFFUNCTION 

function  cumulant8=  Cum8x(m88,m44,m22,m84,m42,m43,m21,flag) 
?-********** + ***■********* *********************************** ************ 
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% Function 
%       - Calclulates the eighth order cumuiants of a sequence 
9 

% Use:    cumulant8= cum8x(m88,m44,m22,m84,m42,m43,m21, flag) 
ft. 
o 

% Input:   m88-> The eighth order moment (M88) of the signal 
% m44-> The fourth order moment (Ki44) of the signal 
% m22-> The second order moment (M22) of the signal 
% m84-> The eighth order moment (M84) of the signal 
% TP.42-> The fourth order moment (M42) of the signal 
% m43-> The fourth order moment (M43) of the signal 
% m21-> The second order moment (M42) of the signal 
% flag-> A flag variable indication which cumulant is to be 
estimated (C84 or C88) 
Q, 
O 

% Returns:  cumulant8-> The eighth order cumulant estimate 

% 21 January 2 001 
% LtJg George Hatzichristos Hellenic Navy 
s-********************************************************************** 
if flag==l 

cumulant8=m84-m44.A2-18*m42^2-16*m43.*2-54*m22.A4-144*m21.Ä4- 
432*m22.A2.*m21.A2+12*m44.*m22.A2+96*m43.*m21.*m22+144*m42.*m21.*2+72*m 
42.*m22.A2+96*m43.*m22.*m21; %C84 
elseif flag==0 

cumulant8=m88-35*m44.A2-630*m22.A4+420*(m22.A2).*m44;%  C88 
end 
return 
% 3ND     OF     FUNCTION 

function [ynew,flagout]=fsecma(r,stp); 
%********************************************************************** 
% Function 
%       - Implements the FSE-CMA blind equalization algorithm 
a, 

% Use:    [ynew,flagout]=fsecma{r,stp) 

% Input:    r-> The signal that is to be equalized 
% stp-> The desired algorithm step 
o, 
Q 

% Returns:  ynew-> The equalized signal 
% flagout-> A diagnostic flag variable 
% 
% Function fsecma.m created by the MPRG group 
% Modified on 21 January 2001 by 
% LtJg George Hatzichristos Hellenic Navy 
S-********************************************************************** 

% Run CMA on T/2-spaced modem data 
% with a T/2-spaced equalizer (FSS) 
flagout=l; 
r=r' ; 
% Get number of T-spaced symbols 
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L=(length(r)/2); 
% Normalize to unit power 
r=r-mean(r); 
r=r/((l/length(r))*norm(r,2)*2); 
% Define ?SE 
Nf=16;  % This is the number of coefficients in use 
f=zeros(Nf,L); 
% Center spike init 
f(Nf/2,Nf/2-l)=l; 
% Define step-size & dispersion constant 
% any number for g will work to open eye 
% or rings 
mu=stp; 
qaml=abs(r).*4;qam2=abs(r).A2;g=qaml/qam2; 
% Define error and equalizer output 
e=zeros(1,L); 
y=zeros(1,L); 
% Run CMA 
for k=Nf:2:2*L, 
j=k/2; 
R=r(k:-l:k-Nf+l).'; 
y(j)=R. '*f (:,j-l) ; 
if  norm(y(j))>10000 
flagout=-l 

return 
end 

f(:,j)=f(:,j-1)+mu*conj(R)*y(j)*(g-abs(y(j))"2); 
end 
% Run new data to get eye diagram 
% make sure to get odd samples 
ynew=filter(f(:,j),l,r) ; 
ynew=ynew(2:2:length(ynew)); 
ynew=ynew(100:length(ynew)-100); 
ynew=ynew'; 
flagout=l; 
return 
% ENDOFFUNCTION 

function [y_fsk,Y_fsk] = getMfsk (M,fd,fs,fc,bin,message) ,• 
5-*** ******************************************************* ************ 

% Function 
%       - Creates an M-FSK signal 
% 
% Use:    [y_fsk,Y_fsk] = getMfsk (M,fd,fs,fc,bin,message) 
o, 
o 

% Input: M-> The constellation order (ex. M=8 for 8-FSK) 
% fd-> The digital signal's frequency before the modulation 
% fs-> The sampling frequency 
% fc-> The carrier frequency (For pass-band signals only) 
% bin-> The number of fft bins 
% message->The message that is to be modulated 
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% Returns:  y_fsk-> The modulated M-fsk sequence 
% Y_fsk-> The spectrum of the M-fsk sequence 

% 21 January 2 001 
% Lt-Jg George Hatzichristos Hellenic Navy 
%***** ********************************************** ******************* 
% Map the message 
mp_fsk=modmap(message,fd,fs,'fsk',M),• 
% Modulation 
%y_fsk=dmod(mp_fsk,fc,fd,fs,'fsk/nomap',M);% PASSBAND SIM 
ylfsk=dmodce(mp_fsk,fd,fs, ['fsk', '/nomap'],M);% BASEBAND SIM 
Y_fsk= (abs (fft (y_f sk,bin))) ,- 
return 
% END     OFF  UNCTION 

function   [y_j>sk,Y_psk]   = getMfsk   (M,fd,fs,fc,bin,message); 
%********************************************************************** 

%  Function 
%       - Creates an M-PSK signal 
g, 
o 

% Use: [y_j?sk, Y_j?sk]   =  getMpsk   (M,fd,fs,fc,bin,message) 
O 

% Input:   M-> The constellation order (ex. M=S for 8-PSK) 
% fd-> The digital signal's frequency before the modulation 
% fs-> The sampling frequency 
% fc-> The carrier frequency (For pass-band signals only) 
% bin-> The number of fft bins 
% message->The message that is to be modulated 
% 
% Returns:  y_psk-> The modulated M-psk sequence 
% Y_psk-> The spectrum of the M-psk sequence 

% 21 January 2001 
% LtJg George Hatzichristos Hellenic Navy 
%********************************************************************** 
% Map the message 
mp_jpsk=modmap(message,fd,fs,'psk',M); 
% Modulation 
%y_fsk=dmod(mp_fsk,fc,fd,fs,'fsk/nomap',M);% PASSBAND SIM 
y_psk=dmodce(mp_jpsk,fd,fs,['psk','/nomap'],M);% BASEBAND SIM 
Y_psk= (abs (fft (y_psk,bin))) ,- 
return 
% ENDOFFUNCTION 

function   [y_qam, Y_qam]   =  getMqam   (Mqam, fs, fc,bin,mp_qam) ,- 
S-********************************************************************** 
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% Function 
%        - Creates an M-QAM signal 

Use: 

Incut: 

[y_qam/Y_gam]   =  getMqam   (Mqam,fs,fc,bin,mp_qam) 

Mqam-> The constellation order (ex. M=16 for 16-QAM) 
fs-> The sampling frequency 

0
% fc-> The carrier frequency (For oass-band signals only) 

■s bin-> The number of fft bins 
% mp_qam->The message that is to be modulated 
'S 

% Returns:  y_qam-> The modulated M-qam sequence 
% Y_qam-> The spectrum of the M-qam sequence 

% 21 January 2001 
% LtJg George Hatzichristos Hellenic Navy 
%***************************************************i*^i^^,^^^ 

%y_qam=amod(mp_qam,fc,fs,'qam'); % This is for Dass band simulatior 
y_qam=amodce(mp_qam,fs,'qam'); 
Y_qam=(abs(fft(y_qam,bin))); 
return 
% END  OF  FUNCTION 

function [y_qam,Y_qam] = getMqam (Mqam,fs,fc,bin,mp gam)• 
%***************************************************-****^^^^^ 
% Function 
%       - Creates an M-QAM signal 

% Use: 

% Input: 

[y_qam,Y_qam] = getMqam (Mqam,fs,fc,bin,mp_qam) 

Mqam-> The constellation order (ex. K=16 for 16-QAM) 
fs-> The sampling frequency 

% fc-> The carrier frequency (For pass-band signals onlv) 
■s bin-> The number of fft bins 
% mp_qam->The message that is to be modulated 

% Returns:  y_qam-> The modulated M-qam sequence 
% Y_qam-> The spectrum of the M-qam sequence 

% 21 January 2 001 
% LtJg George Hatzichristos Hellenic Navy 
%*******************************************************^^^^^ 

%y_qam=amod(mp_qam,fc,fs,'qam'); % This is for Dass band simulation 
y_qam=amodce(mp_qam,fs,'qam'); 
Y_qam=(abs(fft(y_qam,bin))); 
return 
% END  OFF UNCTION 

function moment4= mom4x(signal,flag) 
%********************** 
% Function 

***********************************************A 
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%       - Calclulates the fourth order moments of a sequence 

% Use:     moment4= mom4x(signal,flag) 

% input-    signal-> The sequence whose moment is to be estimated 
% " flag-> A flag variable indication which moment is to oe 
estimated (M44,M43 or M42) 

% Returns:  moment4-> The fourth order moment estimate 

% 21 January 2001 
s- L-Ja Georae Hatzichristos Hellenic Navy 

a=real (signal) ,- 
b=imag(signal); 
if flag==2 

moment4=(mean(a.M+b^4+2*(a.A2).Mb.*2)));   % H42 

elseif  flag==l 
moment4=(mean(a."4-b."4));   %E43 

elseif   flaq==0 
moment4=(mean(a.-4+b.-4-6*(a.-2).Mb.-2)));%  E44 

end 
a= [] ;b= [] ; 

fS  Urn END     OF     FUNCTION 

function moment6= mom6x(signal) 
******************************************* %******* 

% Function 

******************** 

%       - Calclulates the sixth order moment B65 of a sequence 

% Use:     moment6= mom6x(signal) 

% Input:    signal-> The sequence whose moment is to be estimated 
o, 

% Returns:  moment6-> The sixth order moment estimate 

% 21 January 2001 
% LtJg Georce Hatzichristos Hellenic Navy 
%■* ******** *************************■""'"' 

************************************ 

a=real(signal); 
b=imag(signal) ; *,M, .   S-TTCC moment6=(mean(a.A6+b.A6-5*(a.-2).*(b.^4)-5*(a.   4).Mb.   2)));   «65 

a=[];b=[] ; 

rtUrn END     OF     FUNCTION 

f^^Ü^^*TSTT^^S-*T^TS^iSil^^ii"r^I  
%  Function 
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%       - Calclulates the eighth order moments of a sequence 
g. 
a 

% Use:     moment8= mora8x(signal,flag} 

% Input:   signal-> The sequence whose moment is to be estimated 
% f!ag-> A flag variable indication which moment is to be 
estimated (M84,M8S or K88) 
o, 

% Returns:  moment8-> The eighth order moment estimate 
o, 

% 21 January 2 001 
% LtJg George Hatzichristos Hellenic Navy 
%******************•*************************•**************•********•• 

a=real(signal); 
b=imag(signal); 
if flag==l 
moment8=(mean(a.x8+b.^8+4*(a.A6.*b.A2)+6*(a.Ä4.*b.A4)+4*(a.Ä2.*b.A6))); 
%E84 
elseif flag==0 

moment8=(mean(a.^8+b.'"8-28*(a.Ä6.*b.Ä2)+70*(a.A4.*b.A4) - 
28*(a.^2.*b."6)));% HS3 
elseif flag==2 

moment8=mean(a.A8+b.*8-4*(a."6).*(b.A2)-10.*(a."4).*(b."4)- 
4.*(a.^2).*(b."6));% E86 
end 
a=[] ;b=[] ; 
return 
% END     OFF  UNCTION 

function [snr_es_db,qam_energy_estimate]=snr_estim(noisy_qam); 
%********************************************************************** 
% Function 
%       - Estimates the signal ;o noise ratio of a M-QAM sequence 
using the kurtosis 
% of the noisy signal, since the kurtosis is proportional to 
the noise level 
% and is equal to 3 for a OdB SNR. 
£. 

% Use:      [snr_es_db,qam_energy_estimate]=snr_escim(noisy_qam) 

% Input:   noisy_qam-> The sequence whose SNR is to be estimated 

% Returns:  snr_es_db-> The signal to noise ratio estimate 
% qam_energy_estimate-> The estimated energy of the noiseless 
M-qam signal 

% 21 January 2 001 
% LtJg George Hatzichristos Hellenic Navy 
%********************************************************************** 
noisy_qam_energy=(1/length(noisy_qam))*norm(noisy_qam,2)A2 
m2_sn=kurtosis(real(noisy_qam)); 

151 



table_qam_snr=[];table_estim_gam=[];difference=[];table_gam=[]; 
table_gam=[20 17 14 10 7 4 1 0; 

1.8016   1.826   1.8675   1.9913   2.1507   2.3728   2.6188   2.693]; 
table_qam_snr=table_gam(2, :) ,- 
table_estim_gam=ones(1,8); 
table_estim_qam=m2_sn*table_estim_gam; 
difference=abs(table_gam_snr-table_estim_gam); 
i=find(difference==min(difference)); 
snr_es_db=0;snr_es_db=table_gam(l,i); 
snr_es=10A (snr_es_db/10) ,-noisy_gam_energy; 
gam_energy_estimate=(snr_es*noisy_gam_energy)/(l+snr_es); 
return 
% EN DOFF  UNCTION 
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APPENDIX E. HIGHER ORDER STATISTICS BEHAVIOR IN NOISE AND FADING 
MULTIPATH ENVIRONMENTS 

The robustness of higher order statistics in noise and propagation phenomena is a 

key to the success of the proposed classifier. Marchand [MAR98] recommends the use of 

moments and cumulants for the classification of digital modulations but does not present 

any clues about the robustness of these tools in real world situations. These situations are 

simulated and presented next.The simulation results are divided into two categories, ha 

the first category only the additive white gaussian noise channel is considered. In the 

second category, nine different propagation channels (Appendix C, Figures C-l to C-9) 

are used in addition to white noise. Each category includes three different sets of results. 

1000, 15000 and 30000 signal samples respectively, are used  to indicate the minimum 

required samples for clear separation between all features. 
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E.l Additive White Gaussian Noice channel simulations 
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Figure El-1. —s-^-, 1000 samples data-set, 100 trials per SNR level. 

154 



Figure El-2. -i=i, 1000 samples data-set, 100 trials per SNR level. 
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Figure El-5. '5,6,5 1000 samples data-set, 100 trials per SNR level. 
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Figure El-9. -^jL, 15,000 samples data-set, 100 trials per SNR level. 
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E.2 Fading multi-path channels simulations 
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c 5,6.5 Figure E2-5. -^, 1000 samples data-set, 100 trials per SNR level. 
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Figure E2-11. -***-, 30,000 samples data-set, 100 trials per SNR level. 
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APPENDIX F. SIMULATION RESULTS 

Simulation results are divided into three main categories. The first category uses a 

rural area propagation model (Figure C-10). The second category a small town 

propagation model (Figure C-12) and the third category an urban propagation model with 

severe multi-path distortions (Figure C-15). Each category contains simulations of seven 

different signal- to-noise ratio levels from 20dB to 2dB. Fifty trials per SNR level and per 

category have been created, forming a total of twenty-one confusion matrixes. Figures C- 

22 to C-28 present the linear channel simulation case. 

2-FSK 4-FSK 8-FSK 2-PSK 4-PSK 8-PSK 16-QAM 64-QAM 256-QAM 

2-FSK 50 0 0 0 0 0 0 0 0 

4-FSK 0 50 0 0 0 0 0 0 0 

8-FSK 0 0 50 0 0 0 0 0 0 

2-PSK 0 0 0 50 0 0 0 0 0 

4-PSK 0 0 0 0 50 0 0 0 0 

8-PSK 0 0 0 0 0 50 0 0 0 

16-QAM 0 0 0 0 0 0 46 3 1 

64-QAM 0 0 0 0 0 0 0 50 0 

256-QAM 0 0 0 0 0 0 0 0 50 

Table F-l. Rural area propagation channel model, SNR=20dB, 50 trials. 

185 



2-FSK 4-FSK 8-FSK 2-PSK 4-PSK 8-PSK 16-QAM 64-QAM 256-QAM 
2-FSK 50 0 0 0 0 0 0 0 0 

4-FSK 0 50 0 0 0 0 0 0 0 
8-FSK 0 0 50 0    _j 0 0 0 0 0 
2-PSK 0 0 0 50 0 0 0 0 0 

4-PSK 0 0 0 0 50 0 0 0 0 
8-PSK 0 0 0 0 0 50 0 0 0 

16-QAM 0 0 0 0 0 0 44 4 2 
64-QAM 0 0 0 0 0 0 0 50 0 

256-QAM 0 0 0 0 0 0 0 4 46 

Table F-2. Rural area propagation channel model, SNR=17dB, 50 trials. 

2-FSK 4-FSK 8-FSK 2-PSK 4-PSK 8-PSK 16-QAM 64-QAM 256-QAM 

2-FSK 50 0 0 0 0 0 0 0 0 

4-FSK 0 50 0 0 0 0 0 0 0 

8-FSK 0 0 50 0 0 0 0 0     J 0 

2-PSK 0 0 0 50 0 0 0 0 0 

4-PSK 0 0 0 0 50 0 0 0 0 

8-PSK 0 0 0 0 0 50 0 0 0 

16-QAM 0 0 0 0 0 0 22 19 9 

64-QAM 0 0 0 0 0 0 0 50 0 

256-QAM 0 0 0 0 0 0 0 1 49 

Table F-3. Rural area propagation channel model, SNR=14dB, 50 trials. 

2-FSK 4-FSK 8-FSK 2-PSK 4-PSK 8-PSK 16-QAM 64-QAM 256-QAM 

2-FSK 50 0 0 0 0 0 0 0 0 

4-FSK 0 50 0 0 0 0 0 0 0 

8-FSK 0 0 50 0 0 0 0 0 0 

2-PSK 0 0 0 50 0 0 0 0 0 

4-PSK 0 0 0 0 50 0 0 0 0 

8-PSK 0 0 0 0 0 50 0 0 0 

16-QAM 0 0 0 0 0 0 0 49 1 

64-QAM 0 0 0 0 0 0 0 49 1 

256-QAM 0 0 0 0 0 0 0 9 41 

Table F-4. Rural area propagation channel model, SNR=1 ldB, 50 trials. 
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2-FSK 4-FSK 8-FSK 2-PSK 4-PSK 8-PSK 16-QAM 64-QAM 256-QAM 
2-FSK 50 0 0 0 0 0 0 0 0 
4-FSK 0 50 0 0 0 0 0 0 0 
8-FSK 0 0 50 0 0 0 0 0 0 
2-PSK 40 0 0 10 0 0 0 0 0 
4-PSK 0 0 0 0 50 0 0 0 0 
8-PSK 0 0 0 0 0 50 0 0 0 

16-QAM 0 0 0 0 0 0 0 31 19 
64-QAM 0 0 0 0 0 0 0 35 15 

256-QAM 0 0 0 0 0 0 0 30 20 

Table F-5. Rural area propagation channel model, SNR=8dB, 50 trials. 

2-FSK 4-FSK 8-FSK 2-PSK 4-PSK 8-PSK 16-QAM 64-QAM 256-QAM 

2-FSK 0 1 49 0 0 0 0 0 0 

4-FSK 0 45 5 0 0 0 0 0 0 
8-FSK 0 7 43 0 0 0 0 0 0 
2-PSK 50 0 0 0 0 0 0 0 0 
4-PSK 0 0 0 0 50 0 0 0 0 
8-PSK 0 0 0 0 0 50 0 0 0 

16-QAM 0 0 0 0. 0 0 0 19 31 
64-QAM 0 0 0 0 0 0 0 48 2 

256-QAM 0 0 0 0 0 0 0 50 0 

Table F-6. Rural area propagation channel model, SNR=5dB, 50 trials. 

2-FSK 4-FSK 8-FSK 2-PSK 4-PSK 8-PSK 16-QAM 64-QAM 
256- 
QAM 

2-FSK 0 2 48 0 0 0 0 0 0 

4-FSK 0 41 9 0 0 0 0 0 0 
8-FSK 0 30 20 0 0 0 0 0 0 

2-PSK 2 0 0 0 0 48 0 0 0 

4-PSK 0 0 0 0 50 0 0 0 0 
8-PSK 0 0 0 0 0 50 0 0 0 

16-QAM 0 0 0 0 0 0 0 50 0 
64-QAM 0 0 0 0 0 0 0 50 0 

256-QAM 0 0 0 0 0 0 0 50 0 

Table F-7. Rural area propagation channel model, SNR=2dB, 50 trials. 
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2-FSK 4-FSK 8-FSK 2-PSK 4-PSK 8-PSK 16-QAM 64-QAM 256-QAM 

2-FSK 44 0 0 0 0 6 0 0 0 

4-FSK 0 50 0 0 0 0 0 0 0 

8-FSK 0 6 44 0 0 0 0 0 0 

2-PSK 0 0 0 50 0 0 0 0 0 

4-PSK 0 0 0 0 50 0 0 0 0 

8-PSK 0 0 0 0 0 50 0 0 0 

16-QAM 0 0 0 0 0 0 36 14 0 

64-QAM 0 0 0 0 0 0 7 12 31 

256-QAM 0 0 0 0 0 0 0 18 32 

Table F-8. Small town propagation channel model, SNR=20dB, 50 trials. 

2-FSK 4-FSK 8-FSK 2-PSK 4-PSK 8-PSK 16-QAM 64-QAM 
256- 
QAM 

2-FSK 48 0 0 0 0 2 0 0 0 

4-FSK 0 50 0 0 0 0 0 0 0 

8-FSK 0 3 47 0 0 0 0 0 0 

2-PSK 0 0 0 50 0 0 0 0 0 

4-PSK 0 0 0 0 50 0 0 0 0 

8-PSK 0 0 0 0 1 49 0 0 0 

16-QAM 0 0 0 0 0 0 35 11 4 

64-QAM 0 0 0 0 0 0 1 22 27 

256-QAM 0 0 0 0 0 0 0 19 31 

Table F-9. Small town propagation channel model, SNR=17dB, 50 trials. 

2-FSK 4-FSK 8-FSK 2-PSK 4-PSK 8-PSK 16-QAM 64-QAM 
256- 
QAM 

2-FSK 47 0 0 0 2 1 0 0 0 

4-FSK 0 50 0 0 0 0 0 0 0 

8-FSK 0 2 48 0 0 0 0 0 0 

2-PSK 0 0 0 50 0 0 0 0 0 

4-PSK 0 0 0 0 50 0 0 0 0 

8-PSK 0 0 0 0 0 50 0 0 0 

16-QAM 0 0 0 0 0 0 36 2 12 

64-QAM 0 0 0 0 0 0 0 21 29 

256-QAM 0 0 0 0 0 0 1 28 21 

Table F-10. Small town propagation channel model, SNR=14dB, 50 trials. 
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2-FSK 4-FSK 8-FSK 2-PSK 4-PSK 8-PSK 16-QAM 64-QAM 256-QAM 

2-FSK 46 0 0 0 0 0 1 1 2 

4-FSK 0 50 0 0 0 0 0 0 0 

8-FSK 0 2 48 0 0 0 0 0 0 

2-PSK 0 0 0 50 0 0 0 0 0 

4-PSK 0 0 0 0 50 0 0 0 0 

8-PSK 0 0 0 0 0 50 0 0 0 

16-QAM 0 0 0 0 0 0 33 8 9 

64-QAM 0 0 0 0 0 0 0 50 0 

256-QAM 0 0 0 0 0 0 0 41 9 

Table F-l 1. Small town propagation channel model, SNR=1 ldB, 50 trials. 

2-FSK 4-FSK 8-FSK 2-PSK 4-PSK 8-PSK 16-QAM 64-QAM 256-QAM 

2-FSK 48 0 0 2 0 0 0 0 0 

4-FSK 0 50 0 0 0 0 0 0 0 

8-FSK 0 5 45 0 0 0 0 0 0 

2-PSK 0 0 0 50 0 0 0 0 0 

4-PSK 0 0 0 0 50 0 0 0 0 

8-PSK 0 0 0 0 0 50 0 0 0 

16-QAM 0 0 0 0 0 0 10 31 9 

64-QAM 0 0 0 0 0 0 0 50 0 

256-QAM 0 0 0 2 0 0 0 44 4 

Table F-l2. Small town propagation channel model, SNR=8dB, 50 trials. 

2-FSK 4-FSK 8-FSK 2-PSK 4-PSK 8-PSK 16-QAM 64-QAM 256-QAM 

2-FSK 0 0 0 50 0 0 0 0 0 

4-FSK 0 22 1 27 0 0 0 0 0 

8-FSK 0 0 40 10 0 0 0 0 0 

2-PSK 50 0 0 0 0 0 0 0 0 

4-PSK 0 0 0 0 50 0 0 0 0 

8-PSK 0 0 0 0 0 50 0 0 0 

16-QAM 0 0 0 36 0 0 0 11 3 

64-QAM 0 0 0 50 0 0 0 0 0 

256-QAM 0 0 0 50 0 0 0 0 0 

Table F-13. Small town propagation channel model, SNR=5dB, 50 trials. 
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2-FSK 4-FSK 8-FSK 2-PSK 4-PSK 8-PSK 16-QAM 64-QAM 256-QAM 

2-FSK 0 0 0 50 0 0 0 0 0 

4-FSK 0 15 5 30 0 0 0 0 0 

8-FSK 0 0 0 50 0 0 0 0 0 

2-PSK 1 0 0 0 0 49 0 0 0 

4-PSK 0 0 0 0 50 0 0 0 0 

8-PSK 0 0 0 0 0 50 0 0 0 

16-QAM 0 0 0 50 0 0 0 0 0 

64-QAM 0 0 0 50 0 0 0 0 0 

256-QAM 0 0 0 50 0 0 0 0 0 

Table F-14. Small town propagation channel model, SNR=2dB, 50 trials. 

2-FSK 4-FSK 8-FSK 2-PSK 4-PSK 8-PSK 16-QAM 64-QAM 256-QAM 

2-FSK 48 0 0 0 0 2 0 0 0 

4-FSK 0 48 2 0 0 0 0 0 0 

8-FSK 0 12 38 0 0 0 0 0 0 

2-PSK 0 0 0 50 0 0 0 0 0 

4-PSK 0 0 0 0 50 0 0 0 0 

8-PSK 0 0 0 0 0 50 0 0 0 

16-QAM 0 0 0 0 0 0 35 15 0 

64-QAM 0 0 0 0 0 0 0 42 8 

256-QAM 0 0 0 0 0 0 0 29 21 

Table F-15. Urban area propagation channel model, SNR=20dB, 50 trials. 

2-FSK 4-FSK 8-FSK 2-PSK 4-PSK 8-PSK 16-QAM 64-QAM 256-QAM 

2-FSK 40 0 0 0 0 10 0 0 0 

4-FSK 0 48 2 0 0 0 0 0 0 

8-FSK 0 14 36 0 0 0 0 0 0 

2-PSK 0 0 0 50 0 0 0 0 0 

4-PSK 0 0 0 0 50 0 0 0 0 

8-PSK 0 0 0 0 0 50 0 0 0 

16-QAM 0 0 0 0 0 0 24 26 0 

64-QAM 0 0 0 0 0 0 0 44 6 

256-QAM 0 0 0 0 0 0 0 37 13 

Table F-16. Urban area propagation channel model, SNR=17dB, 50 trials. 
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2-FSK 4-FSK 8-FSK 2-PSK 4-PSK 8-PSK 16-QAM 64-QAM 256-QAM 

2-FSK 50 0 0 0 0 0 0 0 0 

4-FSK 0 48 2 0 0 0 0 0 0 

8-FSK 0 12 38 0 0 0 0 0 0 

2-PSK 50 0 0 0 0 0 0 0 0 

4-PSK 0 0 0 0 50 0 0 0 0 

8-PSK 0 0 0 0 0 50 0 0 0 

16-QAM 0 0 0 0 0 0 27 22 1 

64-QAM 0 0 0 0 0 0 0 45 5 

256-QAM 0 0 0 0 0 0 0 38 12 

Table F-17. Urban area propagation channel model, SNR=14dB, 50 trials. 

2-FSK 4-FSK 8-FSK 2-PSK 4-PSK 8-PSK 16-QAM 64-QAM 256-QAM 

2-FSK 50 0 0 0 0 0 0 0 0 

4-FSK 0 45 5 0 0 0 0 0 0 

8-FSK 0 19 31 0 0 0 0 0 0 

2-PSK 50 0 0 0 0 0 0 0 0 

4-PSK 0 0 0 0 50 0 0 0 0 

8-PSK 0 0 0 0 0 50 0 0 0 

16-QAM 0 0 0 0 0 0 35 15 0 

64-QAM 0 0 0 0 0 0 0 49 1 

256-QAM 0 0 0 0 0 0 0 49 1 

Table F-18. Urban area propagation channel model, SNR=1 ldB, 50 trials. 

2-FSK 4-FSK 8-FSK 2-PSK 4-PSK 8-PSK 16-QAM 64-QAM 256-QAM 

2-FSK 50 0 0 0 0 0 0 0 0 

4-FSK 0 45 5 0 0 0 0 0 0 

8-FSK 0 14 36 0 0 0 0 0 0 

2-PSK 50 0 0 0 0 0 0 0 0 

4-PSK 0 0 0 0 50 0 0 0 0 

8-PSK 0 0 0 0 0 50 0 0 0 

16-QAM 0 0 0 0 0 0 4 46 0 

64-QAM 0 0 0 0 0 0 0 50 0 

256-QAM 0 0 0 0 0 0 0 50 0 

Table F-19. Urban area propagation channel model, SNR=8dB, 50 trials. 
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2-FSK 4-FSK 8-FSK 2-PSK 4-PSK 8-PSK 16-QAM 64-QAM 256-QAM 

2-FSK 0 1 49 0 0 0 0 0 0 

4-FSK 0 37 13 0 0 0 0 0 0 

8-FSK 0 16 34 0 0 0 0 0 0 

2-PSK 50 0 0 0 0 0 0 0 0 

4-PSK 0 0 0 0 50 0 0 0 0 

8-PSK 0 0 0 0 0 50 0 0 0 

16-QAM 0 0 0 0 0 0 0 50 0 

64-QAM 0 0 0 0 0 0 0 50 0 

256-QAM 0 0 0 0 0 0 0 50 0 

Table F-20. Urban area propagation channel model, SNR=5dB, 50 trials. 

2-FSK 4-FSK 8-FSK 2-PSK 4-PSK 8-PSK 16-QAM 64-QAM 256-QAM 

2-FSK 0 43 7 0 0 0 0 0 0 

4-FSK 0 34 16 0 0 0 0 0 0 
8-FSK 0 28 22 0 0 0 0 0 0 
2-PSK 50 0 0 0 0 0 0 0 0 
4-PSK 0 0 0 0 50 0 0 0 0 

8-PSK 0 0 0 0 0 50 0 0 0 
16-QAM 0 0 0 0 0 0 0 50 0 
64-QAM 0 0 0 0 0 0 0 50 0 

256-QAM 0 o 0 0 2 0 0 48 0 

Table F-21. Urban area propagation channel model, SNR=2dB, 50 trials. 

2-FSK 4-FSK 8-FSK 2-PSK 4-PSK 8-PSK 16-QAM 64-QAM 256-QAM 
2-FSK 50 0 0 0 0 0 0 0 0 
4-FSK 0 49 1 0 0 0 0 0 0 
8-FSK 5 15 30 0 0 0 0 0 0 
2-PSK 0 0 0 50 0 0 0 0 0 
4-PSK 0 0 0 0 50 0 0 0 0 
8-PSK 0 0 0 0 0 50 0 0 0 

16-QAM 0 0 0 0 0 0 50 0 0 
64-QAM 0 0 0 0 0 0 1 39 10 

256-QAM 0 0 0 0 0 0 3 9 38 

Table F-22. Linear channel model c=[ 1,0,0.5], SNR=20dB, 50 trials. 
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2-FSK 4-FSK 8-FSK 2-PSK 4-PSK 8-PSK 16-QAM 64-QAM 256-QAM 

2-FSK 50 0 0 0 0 0 0 0 0 

4-FSK 0 50 0 0 0 0 0 0 0 

8-FSK 1 18 31 0 0 0 0 0 0 

2-PSK 0 0 0 50 0 0 0 0 0 

4-PSK 0 0 0 0 50 0 0 0 0 

8-PSK 0 0 0 0 0 50 0 0 0 

16-QAM 0 0 0 0 0 0 50 0 0 

64-QAM 0 0 0 0 0 0 1 34 15 

256-QAM 0 0 0 0 0 0 0 6 44 

Table F-23. Linear channel model c=[l,050.5], SNR=17dB, 50 trials. 

2-FSK 4-FSK 8-FSK 2-PSK 4-PSK 8-PSK 16-QAM 64-QAM 256-QAM 

2-FSK 50 0 0 0 0 0 0 0 0 

4-FSK 0 49 1 0 0 0 0 0 0 

8-FSK 0 25 25 0 0 0 0 0 0 

2-PSK 0 0 0 50 0 0 0 0 0 

4-PSK 0 0 0 0 50 0 0 0 0 

8-PSK 0 0 0 0 0 50 0 0 0 
16-QAM 0 0 0 0 0 0 46 0 4 

64-QAM 0 0 0 0 0 0 1 10 39 
256-QAM 0 0 0 0 0 0 0 8 42 

Table F-24. Linear channel model c=[l,0,0.5], SNR=14dB, 50 trials. 

2-FSK 4-FSK 8-FSK 2-PSK 4-PSK 8-PSK 16-QAM 64-QAM 256-QAM 
2-FSK 50 0 0 0 0 0 0 0 0 
4-FSK 0 39 11 0 0 0 0 0 0 

8-FSK 0 18 32 0 0 0 0 0 0 
2-PSK 0 0 0 50 0 0 0 0 0 

4-PSK 0 2 0 0 48 0 0 0 0 

8-PSK 0 0 0 0 0 50 0 0 0 

16-QAM 0 0 0 0 0 0 24 3 23 

64-QAM 0 0 0 0 0 0 0 13 37 
256-QAM 0 0 0 0 0 0 0 45 5 

Table F-25. Linear channel model c=[l,0,0.5], SNR=1 ldB, 50 trials. 
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2-FSK 4-FSK 8-FSK 2-PSK 4-PSK 8-PSK 16-QAM 64-QAM 256-QAM 

2-FSK 50 0 0 0 0 0 0 0 0 

4-FSK 0 25 25 0 0 0 0 0 0 

8-FSK 0 26 24 0 0 0 0 0 0 

2-PSK 0 0 0 50 0 0 0 0 0 

4-PSK 0 0 0 0 50 0 0 0 0 

8-PSK 0 0 0 0 0 50 0 0 0 

16-QAM 0 0 0 0 0 0 0 4 46 

64-QAM 0 0 0 0 0 0 0 50 0 

256-QAM 0 0 0 0 0 0 0 50 o 

Table F-26. Linear channel model c=[l,0,0.5], SNR=8dB, 50 trials. 

2-FSK 4-FSK 8-FSK 2-PSK 4-PSK 8-PSK 16-QAM 64-QAM 256-QAM 

2-FSK 50 0 0 0 0 0 0 0 0 

4-FSK 0 37 13 0 0 0 0 0 0 

8-FSK 0 17 33 0 0 0 0 0 0 

2-PSK 50 0 0 0 0 0 0 0 0 

4-PSK 0 0 0 0 50 0 0 0 0 

8-PSK 0 0 0 0 0 50 0 0 0 

16-QAM 0 0 0 0 0 0 0 50 0 

64-QAM 0 0 0 0 0 0 0 50 0 

256-QAM 0 0 0 0 0 0 0 50 0 

Table F-27. Linear channel model c=[l,0,0.5], SNR=5dB, 50 trials. 

2-FSK 4-FSK 8-FSK 2-PSK 4-PSK 8-PSK 16-QAM 64-QAM 256-QAM 

2-FSK 0 50 0 0 0 0 0 0 0 

4-FSK 0 42 8 0 0 0 0 0 0 

8-FSK 0 23 27 0 0 0 0 0 0 

2-PSK 50 0 0 0 0 0 0 0 0 

4-PSK 0 0 0 0 50 0 0 0 0 

8-PSK 0 0 0 0 0 50 0 0 0 

16-QAM 0 0 0 0 34 0 0 16 0 

64-QAM 0 0 0 0 22 26 0 2 0 

256-QAM 0 0 0 0 26 24 0 0 0 

Table F-28. Linear channel model c=[l,0,0.5], SNR=2dB, 50 trials. 
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